Skip to main content
Log in

Electrochemical Activity of a Ni2+/Ni3+ Redox-Couple in Polyanionic Cathode Materials of Different Structure Types

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical properties of nickel-containing polyanionic cathode materials for metal-ion batteries crystallized in three structure types (olivine, NASICON, and α-CrPO4) are studied. The subjects of the research are: LiFe0.5Ni0.5PO4 (olivine), Na1 + 2xNixZr2 – x(PO4)3 (NASICON), as well as Na2Ni2Cr(PO4)3 and Na2Ni2Al(PO4)3 (α-CrPO4). The samples are prepared by different synthetic methods; their phase composition, crystal structure, and morphology are studied. The LiFe0.5Ni0.5PO4- and Na1 + 2xNixZr2 – x(PO4)3-based materials are shown undergoing irreversible structure changes during the first charge with significant irreversible electrochemical capacity (~70−100 mA h g–1). During the cycling of Na2Ni2Cr(PO4)3 and Na2Ni2Al(PO4)3 in sodium half-cell, only Cr3+/Cr4+-redox-couple demonstrated electrochemical activity. The correlation of structure features and electrochemical properties of the studied materials is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B., LixCoO2 (0 < x < –1): A new cathode material for batteries of high energy density, Mater. Res. Bull., 1980, vol. 15, no. 6, p. 783.

    Article  CAS  Google Scholar 

  2. Li, W., Song, B., and Manthiram, A., High-voltage positive electrode materials for lithium-ion batteries, Chem. Soc. Rev., 2017, vol. 46, no. 10, p. 3006.

    Article  CAS  PubMed  Google Scholar 

  3. Armand, M., Axmann, P., Bresser, D., Copley, M., Edström, K., Ekberg, C., Guyomard, D., Lestriez, B., Novák, P., Petranikova, M., Porcher, W., Trabesinger, S., Wohlfahrt-Mehrens, M., and Zhang, H., Lithium-ion batteries—Current state of the art and anticipated developments, J. Power Sources, 2020, vol. 479, p. 228708.

    Article  CAS  Google Scholar 

  4. Kulova, T.L. and Skundin, A.M., High-Voltage Materials for Positive Electrodes of Lithium Ion Batteries (Review), Russ. J. Electrochem., 2016, vol. 52, p. 501.

    Article  Google Scholar 

  5. Hasa, I., Mariyappan, S., Saurel, D., Adelhelm, P., Koposov, A.Y., Masquelier, C., Croguennec, L., and Casas-Cabanas, M., Challenges of today for Na-based batteries of the future: From materials to cell metrics, J. Power Sources, 2021, vol. 482, p. 228872.

    Article  CAS  Google Scholar 

  6. Xu, J., Lin, F., Doeff, M.M., and Tong, W., A review of Ni-based layered oxides for rechargeable Li-ion batteries, J. Mater. Chem. A, 2017, vol. 5, no. 3, p. 874.

    Article  CAS  Google Scholar 

  7. Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B., Phospho-olivines as Positive Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc., 1997, vol. 144, no. 4, p. 1188.

    Article  CAS  Google Scholar 

  8. Okada, S., Ueno, M., Uebou, Y., and Yamaki, J.-I., Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries, J. Power Sources, 2005, vol. 146, no. 1, p. 565.

    Article  CAS  Google Scholar 

  9. Khasanova, N.R., Gavrilov, A.N., Antipov, E.V., Bramnik, K.G., and Hibst, H., Structural transformation of Li2CoPO4F upon Li-deintercalation, J. Power Sources, 2011, vol. 196, no. 1, p. 355.

    Article  CAS  Google Scholar 

  10. Khasanova, N.R., Drozhzhin, O.A., Storozhilova, D.A., Delmas, C., and Antipov, E.V., New Form of Li2FePO4F as Cathode Material for Li-Ion Batteries, Chem. Mater., 2012, vol. 24, no. 22, p. 4271.

    Article  CAS  Google Scholar 

  11. Stafeeva, V.S., Drozhzhin, O.A., Panin, R.V., Filimonov, D.S., Fabrichnyi, P.B., Yashina, L.V., Khasanova, N.R., and Antipov, E.V., The effect of LiFeBO3/C composite synthetic conditions on the quality of the cathodic material for lithium-ion batteries, Russ. J. Electrochem., 2015, vol. 51, p. 619.

    Article  CAS  Google Scholar 

  12. Yamashita, Y., Barpanda, P., Yamada, Y., and Yamada, A., Demonstration of Co3+/Co2+ Electrochemical Activity in LiCoBO3 Cathode at 4.0 V, ECS Electrochem. Lett., 2013, vol. 2, no. 8, p. A75.

    CAS  Google Scholar 

  13. Dominko, R., Bele, M., Gaberšček, M., Meden, A., Remškar, M., and Jamnik, J., Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials, Electrochem. Commun., 2006, vol. 8, no. 2, p. 217.

    Article  CAS  Google Scholar 

  14. Barpanda, P., Ati, M., Melot, B.C., Rousse, G., Chotard, J.N., Doublet, M.L., Sougrati, M.T., Corr, S.A., Jumas, J.C., and Tarascon, J.M., A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure, Nature Mater., 2011, vol. 10, no. 10, p. 772.

    Article  CAS  Google Scholar 

  15. Tertov, I.V., Drozhzhin, O.A., Alekseeva, A.M., Kirsanova, M.A., Mironov, A.V., Abakumov, A.M., and Antipov, E.V., β-LiVP2O7 as a positive electrode material for Li-ion batteries, Electrochim. Acta, 2021, vol. 389, p. 138759.

    Article  CAS  Google Scholar 

  16. Nagahama, M., Hasegawa, N., and Okada, S., High Voltage Performances of Li2NiPO4F Cathode with Dinitrile-Based Electrolytes, J. Electrochem. Soc., 2010, vol. 157, no. 6, p. A748.

    Article  CAS  Google Scholar 

  17. Ellis, B.L., Makahnouk, W.R.M., Rowan-Weetaluktuk, W.N., Ryan, D.H., and Nazar, L.F., Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni), Chem. Mater., 2010, vol. 22, no. 3, p. 1059.

    Article  CAS  Google Scholar 

  18. Mauger, A., Julien, C.M., Armand, M., Goodenough, J.B., and Zaghib, K., Li(Ni,Co)PO4 as cathode materials for lithium batteries: Will the dream come true? Current Opinion Electrochem., 2017, vol. 6, no. 1, p. 63.

    Article  CAS  Google Scholar 

  19. Snydacker, D.H. and Wolverton, C., Transition-Metal Mixing and Redox Potentials in \({\text{L}}{{{\text{i}}}_{x}}\left( {{{{\text{M}}}_{{1--y}}}{\text{M}}_{y}^{'}} \right){\text{P}}{{{\text{O}}}_{4}}\) (M, M' = Mn, Fe, Ni) Olivine Materials from First-Principles Calculations, J. Phys. Chem. C, 2016, vol. 120, no. 11, p. 5932.

    Article  CAS  Google Scholar 

  20. Hautier, G., Jain, A., Ong, S.P., Kang, B., Moore, C., Doe, R., and Ceder, G., Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations, Chem. Mater., 2011, vol. 23, no. 15, p. 3495.

    Article  CAS  Google Scholar 

  21. Zhang, H., Hasa, I., Buchholz, D., Qin, B., Geiger, D., Jeong, S., Kaiser, U., and Passerini, S., Exploring the Ni redox activity in polyanionic compounds as conceivable high potential cathodes for Na rechargeable batteries, NPG Asia Materials, 2017, vol. 9, no. 3, p. e370.

    Article  CAS  Google Scholar 

  22. Yang, L., Markmaitree, T., and Lucht, B.L., Inorganic additives for passivation of high voltage cathode materials, J. Power Sources, 2011, vol. 196, no. 4, p. 2251.

    Article  CAS  Google Scholar 

  23. Zhang, T. and Paillard, E., Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery, Front. Chem. Sci. and Engineering, 2018, vol. 12, no. 3, p. 577.

    Article  CAS  Google Scholar 

  24. Haregewoin, A.M., Wotango, A.S., and Hwang, B.-J., Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy & Environmental Science, 2016, vol. 9, no. 6, p. 1955.

    Article  CAS  Google Scholar 

  25. Drozhzhin, O.A., Shevchenko, V.A., Zakharkin, M.V., Gamzyukov, P.I., Yashina, L.V., Abakumov, A.M., Stevenson, K.J., and Antipov, E.V., Improving salt-to-solvent ratio to enable high-voltage electrolyte stability for advanced Li-ion batteries, Electrochim. Acta, 2018, vol. 263, p. 127.

    Article  CAS  Google Scholar 

  26. Sharikov, F.Y., Drozhzhin, O.A., Sumanov, V.D., Baranov, A.N., Abakumov, A.M., and Antipov, E.V., Exploring the Peculiarities of LiFePO4 Hydrothermal Synthesis Using In Situ Calvet Calorimetry, Crystal Growth & Design, 2018, vol. 18, no. 2, p. 879.

    Article  CAS  Google Scholar 

  27. Chen, J., Vacchio, M.J., Wang, S., Chernova, N., Zavalij, P.Y., and Whittingham, M.S., The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications, Solid State Ionics, 2008, vol. 178, no. 31, p. 1676.

    Article  CAS  Google Scholar 

  28. Chakir, M., El Jazouli, A., and de Waal, D., Synthesis, crystal structure and spectroscopy properties of Na3AZr(PO4)3 (A = Mg, Ni) and Li2.6Na0.4NiZr(PO4)3 phosphates, J. Solid State Chem., 2006, vol. 179, no. 6, p. 1883.

    Article  CAS  Google Scholar 

  29. STOE Win XPOW, Version 1.2 (27-Jul-2001), 2000 STOE, Cie GmbH, Hilpert str. 10, D64295 Darmstadt.

  30. Petrícek, V., Dušek, M., and Palatinus, L., Crystallographic computing system JANA2006: General features, Zeitschrift Krist., 2014, Bd. 229, S. 345.

    Google Scholar 

  31. ICDD PDF-2, International Center for Diffraction Data, Newton Square, USA, 1998.

    Google Scholar 

  32. ICDD PDF-4+, International Center for Diffraction Data, Newton Square, USA, 2020.

  33. Frost, R.L., Weier, M.L., Martens, W., Kloprogge, J.T., and Ding Z., Dehydration of synthetic and natural vivianite, Thermochim. Acta, 2003, vol. 401, no. 2, p. 121.

    Article  CAS  Google Scholar 

  34. Abouimrane, A., Belharouak, I., and Amine, K., Sulfone-based electrolytes for high-voltage Li-ion batteries, Electrochem. Commun., 2009, vol. 11, no. 5, p. 1073.

    Article  CAS  Google Scholar 

  35. Khasanova, N.R., Drozhzhin, O.A., Fedotov, S.S., Storozhilova, D.A., Panin, R.V., and Antipov, E.V., Synthesis and electrochemical performance of Li2Co1 ‒ xMxPO4F (M = Fe, Mn) cathode materials, Beilstein J. Nanotechnol., 2013, vol. 4, p. 860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kosova, N.V., Devyatkina, E.T., Slobodyuk, A.B., and Petrov, S.A., Submicron LiFe1 – yMnyPO4 solid solutions prepared by mechanochemically assisted carbothermal reduction: The structure and properties, Electrochim. Acta, 2012, vol. 59, p. 404.

    Article  CAS  Google Scholar 

  37. Molenda, J., Ojczyk, W., and Marzec, J., Electrical conductivity and reaction with lithium of LiFe1 – yMnyPO4 olivine-type cathode materials, J. Power Sources, 2007, vol. 174, no. 2, p. 689.

    Article  CAS  Google Scholar 

  38. Drozhzhin, O.A., Sumanov, V.D., Karakulina, O.M., Abakumov, A.M., Hadermann, J., Baranov, A.N., Stevenson, K.J., and Antipov, E.V., Switching between solid solution and two-phase regimes in the Li1 ‒ xFe1 – yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study, Electrochim. Acta, 2016, vol. 191, p. 149.

    Article  CAS  Google Scholar 

  39. Truong, Q.D., Devaraju, M.K., Sasaki, Y., Hyodo, H., Tomai, T., and Honma, I., Relocation of Cobalt Ions in Electrochemically Delithiated LiCoPO4 Cathode Materials, Chem. Mater., 2014, vol. 26, no. 9, p. 2770.

    Article  CAS  Google Scholar 

  40. Zheng, L.-L., Xue, Y., Liu, B.-S., Zhou, Y.-X., Hao, S.-E., and Wang, Z.-B., High performance Na3V2(PO4)3 cathode prepared by a facile solution evaporation method for sodium-ion batteries, Ceram. Internat., 2017, vol. 43, no. 6, p. 4950.

    Article  CAS  Google Scholar 

  41. Yahia, H.B., Essehli, R., Avdeev, M., Park, J.B., Sun, Y.K., Al-Maadeed, M.A., and Belharouak, I., Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3, J. Solid State Chem., 2016, vol. 238, p. 103.

    Article  Google Scholar 

  42. Harbaoui, D., Sanad, M.M.S., Rossignol, C., Hlil, E.K., Amdouni, N., and Obbade, S., Synthesis and Structural, Electrical, and Magnetic Properties of New Iron–Aluminum Alluaudite Phases β-Na2Ni2M(PO4)3 (M = Fe and Al), Inorganic Chem., 2017, vol. 56, no. 21, p. 13051.

    Article  CAS  Google Scholar 

  43. Cui, S.-L., Wang, Y.-Y., Liu, S., Li, G.-R., and Gao, X.-P., Evolution mechanism of phase transformation of Li-rich cathode materials in cycling, Electrochim. Acta, 2019, vol. 328, p. 135109.

    Article  CAS  Google Scholar 

  44. Seo, D.-H., Lee, J., Urban, A., Malik, R., Kang, S., and Ceder, G., The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials, Nature Chem., 2016, vol. 8, no. 7, p. 692.

    Article  CAS  Google Scholar 

  45. Kempaiah Devaraju, M., Duc Truong, Q., Hyodo, H., Sasaki, Y., and Honma, I., Synthesis, characterization and observation of antisite defects in LiNiPO4 nanomaterials, Scientific Reports, 2015, vol. 5, no. 1, p. 11041.

    Article  PubMed Central  Google Scholar 

  46. Liu, R., Zheng, S., Yuan, Y., Yu, P., Liang, Z., Zhao, W., Shahbazian-Yassar, R., Ding, J., Lu, J., and Yang, Y., Counter-Intuitive Structural Instability Aroused by Transition Metal Migration in Polyanionic Sodium Ion Host, Advanced Energy Mater., 2021, vol. 11, no. 3, p. 2003256.

    Article  CAS  Google Scholar 

  47. Boivin, E., Chotard, J.-N., Masquelier, C., and Croguennec, L., Towards Reversible High-Voltage Multi-Electron Reactions in Alkali-Ion Batteries Using Vanadium Phosphate Positive Electrode Materials, Molecules, 2021, vol. 26, no. 5, p. 1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to Dr. S.Ya. Istomin for performing thermographic experiments. This work is carried out in the frames of the Program of development of Interdisciplinary academic School of the Moscow State University “The future of the planet and global changes in environment.”

Funding

This work was supported by the Russian Science Foundation, grant no. 19-73-10078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Drozhzhin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozhzhin, O.A., Alekseeva, A.M., Tyablikov, O.A. et al. Electrochemical Activity of a Ni2+/Ni3+ Redox-Couple in Polyanionic Cathode Materials of Different Structure Types. Russ J Electrochem 58, 998–1007 (2022). https://doi.org/10.1134/S1023193522110052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522110052

Keywords:

Navigation