Skip to main content
Log in

The Use of Galvanic Displacement for Synthesizing Pt/Carbide (Mo2C, ZrC, NbC) Catalysts Highly Active in the Hydrogen Evolution Reaction

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The composite materials involving platinum nanoparticles on the surface of carbides of Mo, Zr, and Nb are synthesized by the currentless redox reaction between potassium tetrachloroplatinate(II) and the corresponding carbide (supporting electrolyte—0.5 М H2SO4). The greatest amount of platinum is deposited in the reduction of tetrachloroplatinate(II) by molybdenum carbide Mo2C, and the smallest amount is deposited in the reduction by ZrC. The synthesized materials are characterized by the methods of scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and cyclic voltammetry. The specific surface area of platinum deposited from solutions containing 0.05 M platinum salt during the deposition time of 20 min is found to be 28 m2/g for Pt/Mo2C, 26 m2/g for Pt/ZrC, and 10 m2/g for Pt/NbC. These materials exhibit the high catalytic activity in the reaction of electrochemical hydrogen evolution in acidic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. The electrode potentials of half-reactions (4) and (5) were calculated based on the standard Gibbs energies of formation of substances shown in [39].

REFERENCES

  1. Naimi, Y. and Antar, A., Hydrogen generation by water electrolysis, in Advances in Hydrogen Generation Technologies, Eyvaz, M., Ed., IntechOpen, 2018.https://doi.org/10.5772/intechopen.76814

    Book  Google Scholar 

  2. Bagotzky, V.S., Osetrova, N.V., and Skundin, A.M., Fuel cells: State-of-the-art and major scientific and engineering problems, Russ. J. Electrochem., 2003, vol. 39, p. 919.

    Article  CAS  Google Scholar 

  3. Cornaglia, L.M. and Lombardo, E.A., Pure hydrogen production for low temperature fuel cells, Catal. Lett., 2018, vol.148, p.1015.

    Article  CAS  Google Scholar 

  4. Arkhangel’skii, I.V., Dobrovol’skii, Yu.A., Smirnova, T.N., Lyskov, N.V., Dunaev, A.V., Rogacheva, A.E., and Avdeev, V.V., Nizkotemperaturnye toplivnye elementy s protonprovodyashchei polimernoi membranoi: teoreticheskie osnoly, materialy i konstruktsii (Low-temperature Fuel Cells with Proton-exchange Polymer Membrane: Theoretical Fundamentals, Materials, and Structures, Moscow: Moscow State University, 2007).

  5. Sources for Hydrogen. International Energy Agency. Technology Roadmap – Hydrogen and Fuel Cells, Hoeven, M. van der, Ed., Paris: OESC-IEA, 2015.

  6. Trasatti, S., Electrochemical theory. Hydrogen evolution, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Encyclopedia of Electrochemical Power Sources, Reedijk, J., Ed., Amsterdam: Elsevier Science, 2009, p. 41.

    Google Scholar 

  7. Jeremiasse, A., Bergsma, J., Kleijn, M., Saakes, M., Buisman, C., Stuart, M.C., and Hamelers, H.V.M., Performance of metal alloys as hydrogen evolution reaction catalysts in a microbial electrolysis cell, Int. J. Hydrogen. Energy, 2011, vol.36, p.10482.

    Article  CAS  Google Scholar 

  8. Kuznetsov, V.V., Gamburg, Yu. D., Zhulikov, V.V., Krutskikh, V.M., Filatova, E.A., Trigub, A.L., and Belyakova, O.A., Electrodeposited NiMo, CoMo, ReNi, and electroless NiReP alloys as cathode materials for hydrogen evolution reaction, Electrochim. Acta, 2020, vol. 354, article no. 136610.

    Article  CAS  Google Scholar 

  9. Feng, L., Vrubel, H., Bensimon, M., and Hu, X., Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 5917.

    Article  CAS  PubMed  Google Scholar 

  10. Lva, Y. and Wang, X., Nonprecious metal phosphides as catalysts for hydrogen evolution, oxygen reduction and evolution reactions, Catal: Sci. Technol., 2017, vol. 7, p.3676.

    Google Scholar 

  11. Benck, J.D., Hellstern, Th.R, Kibsgaard, J., Chakthranont, P., and Jaramillo, Th.F., Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials, ACS Catal., 2014, vol. 4, p. 3957.

    Article  CAS  Google Scholar 

  12. Heift, D., Iron sulfide materials, catalysts for electrochemical hydrogen evolution, Inorganics, 2019, vol. 7, p. 75.

    Article  CAS  Google Scholar 

  13. Tsirlina, G.A. and Petrii, O.A., Hydrogen evolution on smooth stoichiometric tungsten and chromium carbides, Electrochim. Acta, 1987, vol. 32, p. 649.

    Article  CAS  Google Scholar 

  14. Zhang, H., Yang, X., Zhang, H., Ma, J., Huang, Zh., Li, J., and Wang, Y., Transition-metal carbides as hydrogen evolution reduction electrocatalysts: Synthetic methods and optimization strategies, Chem.Eur. J., 2021, vol. 27, p. 5074.

    Article  CAS  PubMed  Google Scholar 

  15. Lee, E. and Fokwa, B.P.T., Nonprecious metal borides: Emerging electrocatalysts for hydrogen production, Acc. Chem. Res., 2022, vol. 55, p. 56.

    Article  PubMed  Google Scholar 

  16. Devadas, B., Hydrogen evolution reaction efficiency by low loading of platinum nanoparticles protected by dendrimers on carbon materials, Electrochem. Commun., 2016, vol. 72, p. 135.

    Article  CAS  Google Scholar 

  17. Ji, Zh., Perez-Page, M., Chen J., Rodriguez, R.G., Cai, R., Haigh, S.J., and Holmes, S.M., A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells, Energy, 2021, vol. 226, article no. 120318.

    Article  CAS  Google Scholar 

  18. Michalsky, R., Zhang, Y.-L., and Peterson, A.A., Trends in the hydrogen evolution. Activity of metal carbide catalysts, ACS Catal., 2014, vol. 4, p. 1274.

    Article  CAS  Google Scholar 

  19. Zhang, H., Yang, X., Zhang, H., Ma, J., Huang, Zh., Li, J., and Wang, Y., Transition-metal carbides as hydrogen evolution reaction electrocatalysts: synthetic methods and optimization strategies, Chem. Eur. J., 2021, vol. 27, p. 5074.

    Article  CAS  PubMed  Google Scholar 

  20. Gao, Q., Zhang, W., Shi, Zh., Yang, L., and Tang, Y., Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution, Adv. Mater., 2019, vol. 31, article no. 1802880.

    Article  Google Scholar 

  21. Li, Y., Yin, Z., Liu, X., Cui, M., Chen, S., and Ma, T., Current progress of molybdenum carbide-based materials for electrocatalysis: potential electrocatalysts with diverse applications, Mater. Today Chem., 2021, vol. 19, article no. 100411.

  22. Bayati, M., Liu, X., Abellan, P., Pocock, D., Dixon, M., and Scott, K., Synergistic coupling of a molybdenum carbide nanosphere with Pt nanoparticles for enhanced ammonia electro-oxidation activity in alkaline media, Appl. Energy Mater., 2020, vol. 3, p. 843.

    Article  CAS  Google Scholar 

  23. Chen, M., Ma, Y., Zhou, Y., Liu, Ch., Qin, Y., Fang, Y., Guan, G., Li, X., Zhang, Zh., and Wang, T., Influence of transition metal on the hydrogen evolution reaction over nano-molybdenum-carbide catalyst, Catalysts, 2018, vol. 8, p. 294.

    Article  Google Scholar 

  24. Liu, Z., Li, J., Xue, Sh., Zhou, Sh., Qu, K., Li, Y., and Cai, W., Pt/Mo2C heteronanosheets for superior hydrogen evolution reaction, J. Energy Chem., 2020, vol. 47, p. 317.

    Article  Google Scholar 

  25. Podlovchenko, B.I., Gladysheva, T.D., Filatov, A.Yu, and Yashina, L.V., Peculiarities of the Pt(Cu)/C catalyst formation by galvanic displacement of copper in H2PtCl4, Russ. J. Electrochem., 2012, vol. 48, p. 173.]

    Article  CAS  Google Scholar 

  26. Podlovchenko, B.I., Krivchenko, V.A., Maksimov, Yu.M., Gladysheva, T.D., Yashina, L.V., Evlashin, S.A., and Pilevsky, A.A., Specific features of the formation of Pt(Cu) catalysts by galvanic displacement with carbon nanowalls used as support, Electrochim. Acta, 2012, vol. 76, p. 137.

    Article  CAS  Google Scholar 

  27. Allison, C. and Modin, F.A., Optical and electrical properties of niobium carbide, Phys. Rev. B, 1987, vol. 35, p. 2573.

    Article  CAS  Google Scholar 

  28. Ihsan, M., Wang, H., Majid, S., Yang, J., Kennedy, Sh.J., Guo, Z., and Liu, H.K., MoO2/Mo2C/C spheres as anode materials for lithium ion batteries, Carbon, 2016, vol. 96, p. 1200.

    Article  CAS  Google Scholar 

  29. Kuznetsov, V.V., Podlovchenko, B.I., Batalov, R.S., and Filatova, E.A., nRu ⋅ mPt ⋅ (Hx – 3n – 2mMoO3) composite prepared by surface redox reaction as a highly active electrocatalyst for carbon monoxide and methanol oxidation, Electrochim. Acta, 2019, vol. 300, p. 274.

    Article  CAS  Google Scholar 

  30. Podlovchenko, B.I., Kuznetsov, V.V., and Batalov, R.S., Palladium catalyst modified with molybdenum bronze as a possible alternative to platinum in the methanol oxidation reaction, J. Solid State Electrochem., 2016, vol. 20, p.589.

    Article  CAS  Google Scholar 

  31. Kuznetsov, V.V., Batalov, R.S., and Podlovchenko, B.I., nPd0(Hx – 2nMoO3) composites as catalysts of methanol and formic acid electrooxidation, Russ. J. Electrochem., 2016, vol. 52, p. 408.

    Article  CAS  Google Scholar 

  32. Hall, M.D., Daly, H.L., Zhang, J.Z., Zhang, M., Alderden, R.A., Pursche, D., Foranc, G.J., and Hambley, T.W., Quantitative measurement of the reduction of platinum(IV) complexes using X-ray absorption near-edge spectroscopy (XANES), Metallomics, 2012, vol. 4, p. 568.

    Article  CAS  PubMed  Google Scholar 

  33. Handbook of Preparative Inorganic Synthesis, Brauer, G., Ed., New York: Academic, 1963.

    Google Scholar 

  34. Trasatti, S. and Petrii, O.A., Real surface area measurements in electrochemistry, Pure Appl. Chem., 1991, vol. 63, p. 711.

    Article  CAS  Google Scholar 

  35. Łukaszewski, M., Soszko, M., and Czerwiński, A., Electrochemical methods of real surface area determination of noble metal electrodes – an overview, Int. J. Electrochem. Sci., 2016, vol. 11, p. 4442.

    Article  Google Scholar 

  36. Wyvratt, B.M., Gaudet, J.R., and Thompson, L.T., Effects of passivation on synthesis, structure and composition of molybdenum carbide supported platinum water–gas shift catalysts, J. Catal., 2015, vol. 330, p. 280.

    Article  CAS  Google Scholar 

  37. Li, J., Wang, H., and Xiao, X., Intercalation in two-dimensional transition metal carbides and nitrides (MXenes) toward electrochemical capacitor and beyond, Energy Environ. Mater., 2020, vol. 3, p.306.

    Article  CAS  Google Scholar 

  38. Bard, A.J., Parsons, R., and Jordan, J., Standard Potentials in Aqueous Solution, New York: M. Dekker, 1985.

    Google Scholar 

  39. Termicheskie konstanty veshchestv. Spravochnik. Chast’ 1. Tablitsy prinyatykh znachenii (Thermal Constants of Substances, Handbook. Part 1. Tables of Accepted Values), Glushko, V.P., Ed., Moscow: VINITI, 1974.

    Google Scholar 

  40. Greczynski, G., Primetzhofer, D., and Hultman, L., Reference binding energies of transition metal carbides by core-level X-ray photoelectron spectroscopy free from Ar+ etching artefacts, Appl. Surf. Sci., 2018, vol. 436, p. 102.

    Article  CAS  Google Scholar 

  41. Peiffert, C., Nguyen-Trung, C., Palmer, D.A., Laval, J.P., and Giffaut, E., Solubility of β-Nb2O5 and the hydrolysis of niobium(V) in aqueous solution as a function of temperature and ionic strength, J. Solution Chem., 2010, vol. 39, p. 197.

    Article  CAS  Google Scholar 

  42. Kobayashi, T., Sasaki, T., Takagi, I., and Moriyama, H., Solubility of zirconium(IV) hydrous oxides, J. Nucl. Sci. Technol., 2007, vol. 44, p. 90.

    Article  CAS  Google Scholar 

  43. Davodi, F., Cilpa-Karhu, G., Sainio, J., Tavakkoli, M., Jiang, H., Mühlhausen, E., Marzun, G., Gökce, B., Laasonen, K., and Kallio, T., Designing of low Pt electrocatalyst through immobilization on metal@C support for efficient hydrogen evolution reaction in acidic media, J. Electroanal. Chem., 2021, vol. 896, article no. 115076.

    Article  CAS  Google Scholar 

  44. Chen, W.-F., Iyer, Sh., Iyer, Shw., Sasaki, K., Wang, Ch.-H., Zhu, Y., Muckerman, J.T., and Fujita, E., Biomass-derived electrocatalytic composites for hydrogen evolution, Energy Environ. Sci., 2013, vol. 6, p. 1818.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kuznetsov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.V., Podlovchenko, B.I., Frolov, K.V. et al. The Use of Galvanic Displacement for Synthesizing Pt/Carbide (Mo2C, ZrC, NbC) Catalysts Highly Active in the Hydrogen Evolution Reaction. Russ J Electrochem 58, 896–906 (2022). https://doi.org/10.1134/S1023193522100093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522100093

Keywords:

Navigation