Skip to main content
Log in

Voltammetric and Spectroscopic Evaluation of the Interactions of (E)-1-((4-phenoxyphenylimino)methyl)naphthalen-2-ol with Bovine and Human Serum Albumins at Physiological pH

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The bindings of (E)-1-((4-phenoxyphenylimino)methyl)naphthalen-2-ol (PMNO) to bovine and human serum albumins (abbreviated as BSA and HSA, respectively) in 0.05 M phosphate buffer (abbreviated as PB) solution of pH 7.40 were analysed via square-wave voltammetry (SWV) and UV-Vis absorption spectroscopy. By using decreases in the reduction current of PMNO with addition of the serum albumins, the binding constants of the interactions between PMNO and BSA and HSA for a binding ratio of 1 : 1 were found to be 1.97 × 108 and 1.78 × 106 M−1, respectively. From the UV-Vis absorption spectroscopy data at 443 nm, the binding constant values for PMNO–BSA and PMNO–HSA systems were obtained to be 1.37 × 107 and 1.39 × 106 M−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Sadrjavadi, K., Rahmati, F., Jafari, F., Moradi, S., Nowroozi, A., and Shahlaei, M., A study on the binding of loperamide to human serum albumin using combination of computational and experimental methods, Biochem. Anal. Biochem., 2017, vol. 6, p. 346. https://doi.org/10.4172/2161-1009.1000346

    Article  Google Scholar 

  2. Ghosh, S., Paul, B.K., and Chattopadhyay, N., Interaction of cyclodextrins with human and bovine serum albumins: a combined spectroscopic and computational investigation, J. Chem. Sci., 2014, vol. 126, p. 931. https://doi.org/10.1007/s12039-014-0652-6

    Article  CAS  Google Scholar 

  3. Hu, Y.-J., Liu, Y., and Xiao, X.-H., Investigation of the interaction between berberine and human serum albumin, Biomacromolecules, 2009, vol. 10, p. 517. https://doi.org/10.1021/bm801120k

    Article  CAS  PubMed  Google Scholar 

  4. Hejchman, E., Kruszewska, H., Maciejewska, D., Sowirka-Taciak, B., Tomczyk, M., Sztokfisz-Ignasiak, A., Jankowski, J., and Młynarczuk-Biały, I., Design, synthesis, and biological activity of Schiff bases bearing salicyl and 7-hydroxycoumarinyl moieties, Monatsh. Chem., 2019, vol. 150, p. 255. https://doi.org/10.1007/s00706-018-2325-5

    Article  CAS  Google Scholar 

  5. Prashanth, M.K., Madaiah, M., Revanasiddappa, H.D., and Amruthesh, K.N., Synthesis, characterization, and BSA binding studies of some new benzamides related to Schiff base, ISRN Org. Chem., 2013, vol. 2013, art. ID 791591, p. 1. https://doi.org/10.1155/2013/791591

  6. Kajal, A., Bala, S., Kamboj, S., Sharma, N., and Saini, V., Schiff bases: a versatile pharmacophore, J. Catal., 2013, vol. 2013, art. ID 893512, p. 1. https://doi.org/10.1155/2013/893512

  7. Srinivasan, V., Khamrang, T., Ponraj, C., Saravanan, D., Yamini, R., Bera, S., and Jhonsi, M.A., Pyrene based Schiff bases: synthesis, crystal structure, antibacterial and BSA binding studies, J. Mol. Struct., 2021, vol. 1225, art. 129153. https://doi.org/10.1016/j.molstruc.2020.129153

    Article  CAS  Google Scholar 

  8. Sabry, M.M.F., Ebeid, E.M., Issa, Y.M., and El-Daly, S.A., Fluorescence and laser activity of some pyrazinyl Schiff-base derivatives, J. Chim. Phys., 1989, vol. 86, p. 2163. https://doi.org/10.1051/jcp/1989862163

    Article  CAS  Google Scholar 

  9. Liu, B.-M., Ma, P., Wang, X., Kong, Y.-M., Zhang, L.-P., and Liu, B., Synthesis of three rimantadine Schiff bases and their biological effects on serum albumin, Iran. J. Pharm. Res., 2014, vol. 13, p. 1183. https://doi.org/10.22037/IJPR.2014.1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Niu, H.Y., Liu, B., Ma, P., Wang, X., Liu, B.M., and Wang, D.J., Study of the interaction between three new amantadine Schiff bases and BSA by the multi-spectroscopic method, Appl. Mech. Mat., 2013, vols. 239–240, p. 193. https://doi.org/10.4028/www.scientific.net/AMM.239-240.193

  11. Rudra, S., Dasmandal, S., Patra, C., and Mahapatra, A., Spectroscopic exploration and molecular docking analysis on interaction of synthesized Schiff base ligand with serum albumins, J. Mol. Struct., 2018, vol. 1167, p. 107. https://doi.org/10.1016/j.molstruc.2018.04.089

    Article  CAS  Google Scholar 

  12. Sun, L., Zhang, J., and Liu, K., Electrochemical investigation of ascorbic acid interacting with bovine serum albumin, Anal. Lett., 2007, vol. 40, p. 3050. https://doi.org/10.1080/00032710701645745

    Article  CAS  Google Scholar 

  13. Wen, W., Tan, Y., Xiong, H., and Wang, S., Voltammetric and spectroscopic investigations of the interaction between colchicine and bovine serum albumin, Int. J. Electrochem. Sci., 2010, vol. 5, p. 232. http:// www.electrochemsci.org/papers/vol5/5020232.pdf.

    CAS  Google Scholar 

  14. Jalalvand, A.R., Ghobadi, S., Goicoechea, H.C., Faramarzi, E., and Mahmoudi, M., Matrix augmentation as an efficient method for resolving interaction of bromocriptine with human serum albumin: trouble shooting and simultaneous resolution, Heliyon, 2019, vol. 5, p. e02153. https://doi.org/10.1016/j.heliyon.2019.e02153

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mahanthappa, M., Gowda, B.G., Gowda, J.I., and Rengaswamy, R., Spectroscopic, voltammetry and molecular docking study of binding interaction of antipsychotic drug with bovine serum albumin, J. Electrochem. Sci. Eng., 2016, vol. 6, p. 155. https://doi.org/10.5599/jese.205

    Article  CAS  Google Scholar 

  16. Rajendiran, N. and Suresh, M., Study of the interaction of ciprofloxacin and sparfloxacin with biomolecules by spectral, electrochemical and molecular docking methods, Int. Lett. Chem., Phys. Astron., 2018, vol. 78, p. 1. https://doi.org/10.18052/www.scipress.com/ILCPA.78.1

    Article  Google Scholar 

  17. Gowda, B., Mallappa, M., Gowda, J.I., and Rengasamy, R., Interaction of ketoconazole with bovine serum albumin: electrochemical, spectroscopic and molecular modeling studies, J. Appl. Pharm. Sci., 2015, vol. 5, p. 037. https://doi.org/10.7324/JAPS.2015.58.S6

  18. Naik, P.N., Nandibewoor, S.T., and Chimatadar, S.A., Non-covalent binding analysis of sulfamethoxazole to human serum albumin: fluorescence spectroscopy, uv-vis, ft-ir, voltammetric and molecular modeling, J. Pharm. Anal., 2015, vol. 5, p. 143. https://doi.org/10.1016/j.jpha.2015.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun, W., Jiao, K., Han, J., and Zhao, C., A linear sweep voltammetric determination of proteins with thorin, Acta Chim. Slov., 2006, vol. 53, p. 367. http://acta-arhiv.chem-soc.si/53/53-3-367.pdf.

    CAS  Google Scholar 

  20. Dong, S.-Y., Xue, C.-X., and Huang, T.-L., Electrochemical studies of the interaction of clarithromycin with bovine serum albumin, Anal. Sci., 2008, vol. 24, p. 1087. https://doi.org/10.2116/analsci.24.1087

    Article  CAS  PubMed  Google Scholar 

  21. Bi, S., Yan, L., Wang, B., Bian, J., and Sun, Y., Spectroscopic and voltammetric characterizations of the interaction of two local anesthetics with bovine serum albumin, J. Lumin., 2011, vol. 131, p. 866. https://doi.org/10.1016/j.jlumin.2010.12.016

    Article  CAS  Google Scholar 

  22. Zhu, J., Hu, W., Wu, D., Chen, L., and Liu, X., Investigation of the interaction of batatasin derivatives with human serum albumin using voltammetric and spectroscopic methods, RSC Adv., 2016, vol. 6, p. 36281. https://doi.org/10.1039/C6RA03062A

    Article  CAS  Google Scholar 

  23. Daneshegar, P., Moosavi-Movahedi, A.A., Norouzi, P., Ganjali, M.R., Farhadi, M., and Sheibani, N., Characterization of paracetamol binding with normal and glycated human serum albumin assayed by a new electrochemical method, J. Braz. Chem. Soc., 2012, vol. 23, p. 315. https://doi.org/10.1590/S0103-50532012000200018

    Article  CAS  Google Scholar 

  24. Leuna, J.-B.M., Sop, S.K., Makota, S., Njanja, E., Ebelle, T.C., Azebaze, A.G., Ngameni, E., and Nassi, A., Voltammetric behavior of mammeisin (ma) at a glassy carbon electrode and its interaction with bovine serum albumin (BSA), Bioelectrochemistry, 2018, vol. 119, p. 20. https://doi.org/10.1016/j.bioelechem.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  25. Afsharan, H., Hasanzadeh, M., Shadjou, N., and Jouyban, A., Interaction of some cardiovascular drugs with bovine serum albumin at physiological conditions using glassy carbon electrode: a new approach, Mat. Sci. Eng. C-Mater., 2016, vol. 65, p. 97. https://doi.org/10.1016/j.msec.2016.03.112

    Article  CAS  Google Scholar 

  26. Huang, S., Zhu, F., Xiao, Q., Zhou, Q., Su, W., Qiu, H., Hu, B., Sheng, J., and Huang, C., Combined spectroscopy and cyclic voltammetry investigates the interaction between [(η6-p-cymene)Ru(benzaldehyde-N(4)-phenylthiosemicarbazone)Cl]Cl anticancer drug and human serum albumin, RSC Adv., 2014, vol. 4, p. 36286. https://doi.org/10.1039/C4RA06083K

    Article  CAS  Google Scholar 

  27. Zhang, Q., Ni, Y., and Kokot, S., Combined voltammetric and spectroscopic analysis of small molecule-biopolymer interactions: the levodopa and serum albumin system, Talanta, 2012, vol. 88, p. 524. https://doi.org/10.1016/j.talanta.2011.11.027

    Article  CAS  PubMed  Google Scholar 

  28. Omanović, D. and Branica, M., Automation of voltammetric measurements by polarographic analyser PAR 384B, Croat. Chem. Acta, 1998, vol. 71, p. 421. https://hrcak.srce.hr/132355.

    Google Scholar 

  29. Alpaslan, G., Macit, M., Erdönmez, A., and Büyükgüngür, O., Experimental and computational studies on zwitterionic (E)-1-((4-phenoxyphenyliminio)methyl)naphthalen-2-olate, J. Mol. Struct., 2011, vol. 997, p. 70. https://doi.org/10.1016/j.molstruc.2011.04.042

    Article  CAS  Google Scholar 

  30. Phosphate Buffer (pH 5.8 to 7.4) Preparation, AAT Bioquest Inc., Dec. 17, 2020. https://www.aatbio.com/resources/buffer-preparations-and-recipes/phosphate-buffer-ph-5-8-to-7-4.

  31. Ghoneim, M.M., Mabrouk, E.M., Hassanein, A.M., El-Attar, M.A., and Hesham, E.A., Voltammetric and potentiometric studies of some sulpha drug-Schiff base compounds and their metal complexes, Cent. Eur. J. Chem., 2007, vol. 5, p. 898. https://doi.org/10.2478/s11532-007-0035-7

    Article  CAS  Google Scholar 

  32. Ribeiro, W.F., da Costa, D.J.E., Lourenço, A.S., de Medeiros, E.P., Salazar-Banda, G.R., do Nascimento, and Araujo, M.C.U., Adsorptive stripping voltammetric determination of trace level ricin in castor seeds using a boron-doped diamond electrode, Electroanalysis, 2017, vol. 29, p. 1783. https://doi.org/10.1002/elan.201700100

    Article  CAS  Google Scholar 

  33. Smarzewska, S., Guziejewski, D., Skowron, M., Skrzypek, S., and Ciesielski, W., Voltammetric behavior and quantitative determination of ambazone concentrations in urine and in a pharmaceutical formulation, Cent. Eur. J. Chem., 2014, vol. 12, p. 1239. https://doi.org/10.2478/s11532-014-0574-7

    Article  CAS  Google Scholar 

  34. Bollo, S., Núñez-Vergara, L.J., Barrientos, C., and Squella, J.A., Nitroradical anion formation from some iodo-substituted nitroimidazoles, Electroanalysis, 2005, vol. 17, p. 1665. https://doi.org/10.1002/elan.200503271

    Article  CAS  Google Scholar 

  35. Laviron, E., Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry, J. Electroanal. Chem. Interfacial Electrochem., 1974, vol. 52, p. 355. https://doi.org/10.1016/S0022-0728(74)80448-1

    Article  CAS  Google Scholar 

  36. Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. Interfacial Electrochem., 1979, vol. 101, p. 19. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  37. Elqudaby, H.M., Mohamed, G.G., Ali, F.A., and Eid, Sh.M., Validated voltammetric method for the determination of some antiprotozoa drugs based on the reduction at an activated glassy carbon electrode, Arab. J. Chem., 2013, vol. 6, p. 327. https://doi.org/10.1016/j.arabjc.2011.05.019

    Article  CAS  Google Scholar 

  38. Pang, D.-W. and Abruña, H.D., Micromethod for the investigation of the interactions between DNA and redox-active molecules, Anal. Chem., 1998, vol. 70, p. 3162. https://doi.org/10.1021/ac980211a

    Article  CAS  PubMed  Google Scholar 

  39. Özdemir, N., Özdemir, S., and Biçer, E., Interaction between Janus Green B and bovine serum albumin: electrochemistry and spectroscopy studies, Chin. Chem. Lett., 2011, vol. 22, p. 717. https://doi.org/10.1016/j.cclet.2010.12.007

    Article  CAS  Google Scholar 

  40. Özdemir, S. and Biçer, E., Temperature effect on binding affinity and stoichiometry between some steroids and human serum albumin, J. Chil. Chem. Soc., 2016, vol. 61, p. 2809. https://doi.org/10.4067/S0717-97072016000100013

    Article  Google Scholar 

  41. Sun, W., Han, J., Ren, Y., and Jiao, K., Voltammetric studies on the interaction of Orange G with proteins:analytical applications, J. Braz. Chem. Soc., 2006, vol. 17, p. 510. https://doi.org/10.1590/S0103-50532006000300012

    Article  CAS  Google Scholar 

  42. Zhao, J., Zheng, X., Xing, W., Huang, J., and Li, G., Electrochemical studies of camptothecin and its interaction with human serum albumin, Int. J. Mol. Sci., 2007, vol. 8, p. 42. https://doi.org/10.3390/i8010042

    Article  CAS  PubMed Central  Google Scholar 

  43. Altaf, A.A., Hashmat, U., Yousaf, M., Lal, B., Ullah, S., Holder, A.A., and Badshah, A., Synthesis and characterization of azoguanidine based alcoholic media naked eye DNA sensor, R. Soc. Open Sci., 2016, vol. 3, p. 1. https://doi.org/10.1098/rsos.160351

    Article  CAS  Google Scholar 

  44. Mallappa, M., Savanur, M.A., Gowda, B.G., Vishwanth, R.S., and Puthusseri, B., Molecular interaction of hemorrheologic agent, pentoxifylline with bovine serum albumin: an approach to investigate the drug protein interaction using multispectroscopic, voltammetry and molecular modelling techniques, Z. Phys. Chem., 2019, vol. 233, p. 973. https://doi.org/10.1515/zpch-2018-0002

    Article  CAS  Google Scholar 

  45. Hamilton, A., The formation and characterisation of a polypyrrole based sensor for the detection of urea, PhD Thesis, Maynooth: National University of Ireland, 2012. https://mural.maynoothuniversity.ie/3998/1/ Anita_Hamilton_PhD_Thesis.pdf.

    Google Scholar 

  46. Yáñez, C., Cañete-Rosales, P., Castillo, J.P., Catalán, N., Undabeytia, T., and Morillo, E., Cyclodextrin inclusion complex to improve physicochemical properties of herbicide bentazon: exploring better formulations, PLoS ONE, 2012, vol. 7, p. e41072. https://doi.org/10.1371/journal.pone.0041072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Radi, A.-E.M. and Eissa, S.H., Voltammetric and spectrophotometric studies on the inclusion complex of glipizide with β-cyclodextrin, Eurasian J. Anal. Chem., 2011, vol. 6, p. 13. http://www.eurasianjournals.com/data-cms/articles/20210831122155pm060102.pdf.

    Google Scholar 

  48. Khan, A.B., Khan, J.M., Ali, M.S., Khan, R.H., and Kabir-ud-Din, Interaction of amphiphilic drugs with human and bovine serum albumins, Spectrochim. Acta A, 2012, vol. 97, p. 119. https://doi.org/10.1016/j.saa.2012.05.060

    Article  CAS  Google Scholar 

  49. Butkus, J.M., O’Riley, S., Chohan, B.S., and Basu, S., Interaction of small zinc complexes with globular proteins and free tryptophan, Int. J. Spectrosc., 2016, vol. 2016, art. ID 1378680, p. 1. https://doi.org/10.1155/2016/1378680

  50. Vignesh, G., Nehru, S., Manojkumar, Y., and Arunachalam, S., Spectroscopic investigation on the interaction of some surfactant-cobalt(III) complexes with serum albumins, J. Lumin., 2014, vol. 145, p. 269. https://doi.org/10.1016/j.jlumin.2013.07.050

    Article  CAS  Google Scholar 

  51. Varlan, A. and Hillebrand, M., Bovine and human serum albumin interactions with 3-carboxyphenoxathiin studied by fluorescence and circular dichroism spectroscopy, Molecules, 2010, vol. 15, p. 3905. https://doi.org/10.3390/molecules15063905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maiti, J., Biswas, S., Chaudhuri, A., Chakraborty, S., Chakraborty, S., and Das, R., Environment sensitive fluorescent analogue of biologically active oxazoles differentially recognizes human serum albumin and bovine serum albumin: photophysical and molecular modeling studies, Spectrochim. Acta A, 2017, vol. 175, p. 191. https://doi.org/10.1016/j.saa.2016.12.032

    Article  CAS  Google Scholar 

  53. Jiao, T. and Liu, M., Substitution controlled molecular orientation and nanostructure in the Langmuir-Blodgett films of a series of amphiphilic naphthylidene-containing Schiff base derivatives, J. Colloid Interf. Sci., 2006, vol. 299, p. 815. https://doi.org/10.1016/j.jcis.2006.02.037

    Article  CAS  Google Scholar 

  54. Knittl, E.T., Abou-Hussein, A.A., and Linert, W., Syntheses, characterization, and biological activity of novel mono- and binuclear transition metal complexes with a hydrazone Schiff base derived from a coumarin derivative and oxalyldihydrazine, Monatsh. Chem., 2018, vol. 149, p. 431. https://doi.org/10.1007/s00706-017-2075-9

    Article  CAS  PubMed  Google Scholar 

  55. Díaz, M.C., Illescas, B.M., Martín, N., Perepichka, I.F., Bryce, M.R., Levillain, E., Viruela, R., and Ortí, E., Electronic interactions in a new π-extended tetrathiafulvalene dimer, Chemistry—A European Journal, 2006, vol. 12, p. 2709. https://doi.org/10.1002/chem.200501001

    Article  CAS  PubMed  Google Scholar 

  56. Sakmar, T.P., Franke, R.R., and Khorana, H.G., The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa, Proc. Nail. Acad. Sci. USA, 1991, vol. 88, p. 3079. https://doi.org/10.1073/pnas.88.8.3079

    Article  CAS  Google Scholar 

  57. Loppnow, G.R., Barry, B.A., and Mathies, R.A., Why are blue visual pigments blue? A resonance raman microprobe study, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, p. 1515. https://doi.org/10.1073/pnas.86.5.1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dukkipati, A., Kusnetzow, A., Babu, K.R., Ramos, L., Singh, D., Knox, B.E., and Birge, R.R., Phototransduction by vertebrate ultraviolet visual pigments: protonation of the retinylidene Schiff base following photobleaching, Biochemistry, 2002, vol. 41, p. 9842. https://doi.org/10.1021/bi025883g

    Article  CAS  PubMed  Google Scholar 

  59. Kirdant, A.S., Shankarwar, S.G., and Chondhekar, T.K., Kinetic study and mechanism of hydrolysis of n-salicylidene-m-chloroaniline, Int. J. Chem. Sci., 2010, vol. 8, p. 279. https://www.tsijournals.com/articles/kinetic-study-and-mechanism-of-hydrolysis-of-nsalicylidenemchloroaniline.pdf.

    Google Scholar 

  60. Benamara, H., Lanez, T., and Lanez, E., BSA-binding studies of 2- and 4-ferrocenylbenzonitrile: voltammetric, spectroscopic and molecular docking investigations, J. Electrochem. Sci. Eng., 2020, vol. 10, p. 335. https://doi.org/10.5599/jese.861

    Article  CAS  Google Scholar 

  61. Yu, H., Zhang, W., Yu, Q., Huang, F.-P., Bian, H.-D., and Liang, H., Ni(II) complexes with Schiff base ligands: preparation, characterization, DNA/protein interaction and cytotoxicity studies, Molecules, 2017, vol. 22, p. 1772. https://doi.org/10.3390/molecules22101772

    Article  CAS  PubMed Central  Google Scholar 

  62. Alsamamra, H., Abuteir, M., and Darwish, S., Biophysical interaction of propylthiouracil with human and bovine serum albumins, J. Biomedical. Sci., 2019, vol. 8, p. 1. https://doi.org/10.4172/2254-609X.1000103

    Article  Google Scholar 

  63. Zheng, X., Li, Z., Podariu, M.I., and Hage, D.S., Determination of rate constants and equilibrium constants for solution-phase drug-protein interactions by ultrafast affinity extraction, Anal. Chem., 2014, vol. 86, p. 6454. https://doi.org/10.1021/ac501031y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender Biçer.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ender Biçer, Tanju, N.Ö. & Macit, M. Voltammetric and Spectroscopic Evaluation of the Interactions of (E)-1-((4-phenoxyphenylimino)methyl)naphthalen-2-ol with Bovine and Human Serum Albumins at Physiological pH. Russ J Electrochem 58, 835–843 (2022). https://doi.org/10.1134/S1023193522090038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522090038

Keywords:

Navigation