Skip to main content
Log in

Composites Based on Lithium Titanate with Carbon Nanomaterials as Anodes for Lithium-Ion Batteries

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium titanate composites with conducting additives are synthesized by the sol–gel method. As the conducting additives, carbon nanotubes (CNTs)—plain and heterosubstituted, graphene-like nanoflakes (CNFs), and the carbon coating formed by sucrose (S) pyrolysis are used. The introduction of carbon nanotubes considerably increases the reversible discharge capacity of composites including the case of high current densities. This occurs as a result of the formation of a three-dimensional network which sustains the fast transport of lithium ions and electrons between the particles of the anode material. Thus, at the current density of 200, 800, 1600, and 3200 mA/g, the reversible discharge capacity of the Li4Ti5O12/С/CNT is found to be 130, 107, 94, and 71 mA h/g, respectively. The use of CNFs as the conducting additive fails to considerably improve the properties of the anode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bruce, P.G., Freunberger, S.A., Hardwick, L.J., and Tarascon, J.M., Li–O2 and Li–S batteries with high energy storage, Nat. Mater., 2012, vol. 11, p. 19.

    Article  CAS  Google Scholar 

  2. Albertus, P., Babinec, S., Litzelman, S., and Newman, A., Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy, 2018, vol. 3, p. 16.

    Article  CAS  Google Scholar 

  3. Quartarone, E. and Mustarelli, P., Review—emerging trends in the design of electrolytes for lithium and post-lithium batteries, J. Electrochem. Soc., 2020, vol. 167, no. 050508.

  4. Stenina, I.A. and Yaroslavtsev, A.B., Nanomaterials for lithium-ion batteries and hydrogen energy, Pure Appl. Chem., 2017, vol. 89, p. 1185.

    Article  CAS  Google Scholar 

  5. Kumar, D., Rajouria, S.K., Kuhar, S.B., and Kanchan, D.K., Progress and prospects of sodium-sulfur batteries: A review, Solid State Ionics, 2017, vol. 312, p. 8.

    Article  CAS  Google Scholar 

  6. Skundin, A.M., Kulova, T.L., and Yaroslavtsev, A.B., Sodium-ion batteries (a review), Russ. J. Electrochem., 2018, vol. 54, p. 113.

    Article  CAS  Google Scholar 

  7. Fang, Y., Xiao, L., Chen, Z., Ai, X., Cao, Y., and Yang, H., Recent advances in sodium‑ion battery materials, Electrochem. Energy Rev., 2018, vol. 1, p. 294.

    Article  CAS  Google Scholar 

  8. Li, F., Wei, Z., Manthiram, A., Feng, Y., Ma, J., and Mai, L., Sodium-based batteries: from critical materials to battery systems, J. Mater. Chem. A, 2019, vol. 7, p. 9406.

    Article  CAS  Google Scholar 

  9. Agostini, M., Brutti, S., Navarra, M.A., Panero, S., Reale, P., Matic, A., and Scrosati, B., A high-power and fast charging Li ion battery with outstanding cyclelife, Sci. Rep., 2017, vol. 7, p. 1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lain, M.J., Brandon, J., and Kendrick, E., Design strategies for high power vs. high energy lithium ion cells, Batteries, 2019, vol. 5, p. 64.

    Article  CAS  Google Scholar 

  11. Tomaszewska, A., Chu, Z., Feng, X., O’Kane, S., Liu, X., Chen, J., Ji, C., Endler, E., Li, R., Liu, L., Li, Y., Zheng, S., Vetterlein, S., Gao, M., Du, J., Parkes, M., Ouyang, M., Marinescu, M., Offer, G., and Wu, B., Lithium-ion battery fast charging: A review, eTransportation, 2019, vol. 1, no. 100011.

  12. Lee, A., Vörös, M., Dose, W.M., Niklas, J., Poluektov, O., Schaller, R.D., Iddir, H., Maroni, V.A., Lee, E., Ingram, B., Curtiss, L.A., and Johnson, C.S., Photo-accelerated fast charging of lithium-ion batteries, Nat. Commun., 2019, vol. 10, no. 4946.

  13. Ge, S., Leng, Y., Liu, T., Longchamps, R.S., Yang, X.-G., Gao, Y., Wang, D., Wang, D., and Wang, C.-Y., A new approach to both high safety and high performance of lithium-ion batteries, Sci. Adv., 2020, vol. 6, p. 7633.

    Article  CAS  Google Scholar 

  14. Goodenough, J.B. and Park, K.-S., The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc., 2013, vol. 135, p. 1167.

    Article  CAS  PubMed  Google Scholar 

  15. Li, M., Feng, M., Luo, D., and Chen, Z., Fast charging Li-ion batteries for a new era of electric vehicles, Cell Rep. Phys. Sci., 2020, vol. 1, no. 100212.

  16. Li, Q., Chen, J., Fan, L., Kong, X., and Lu, Y., Progress in electrolytes for rechargeable Li-based batteries and beyond, Green Energy Envir., 2016, vol. 1, p. 18.

    Article  Google Scholar 

  17. Zhang, H., Zhao, H., Khan, M.A., Zou, W., Xu, J., Zhang, L., and Zhang, J., Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries, J. Mater. Chem. A, 2018, vol. 6, p. 20564.

    Article  CAS  Google Scholar 

  18. Yao, P., Yu, H., Ding, Z., Liu, Y., Lu, J., Lavorgna, M., Wu, J., and Liu, X., Review on polymer-based composite electrolytes for lithium batteries, Frontiers Chem., 2019, vol. 7, p. 522.

    Article  CAS  Google Scholar 

  19. Deng, K., Zeng, Q., Wang, D., Liu, Z., Qiu, Z., Zhang, Y., Xiaod, M., and Meng, Y., Single-ion conducting gel polymer electrolytes: design, preparation and application, J. Mater. Chem. A, 2020, vol. 8, p. 1557.

    Article  CAS  Google Scholar 

  20. Zhao, W., Yi, J., He, P., and Zhou, H., Solid-state electrolytes for lithium‑ion batteries: fundamentals, challenges and perspectives, Electrochem. Energy Rev., 2019, vol. 2, p. 574.

    Article  CAS  Google Scholar 

  21. Yaroslavtsev, A.B., Stenina, I.A., and Golubenko, D.V., Membrane materials for energy production and storage, Pure Appl. Chem., 2020, vol. 92, p. 1147.

    Article  CAS  Google Scholar 

  22. Voropaeva, D.Yu., Novikova, S.A., and Yaroslavtsev, A.B., Polymer electrolytes for metal-ion batteries, Russ. Chem. Rev., 2020, vol. 89, p.1132.

    Article  CAS  Google Scholar 

  23. Kennedy, T., Brandon, M., and Ryan, K.M., Advances in the application of silicon and germanium nanowires for high-performance lithium-ion batteries, Adv. Mater., 2016, vol. 28, p. 5696.

    Article  CAS  PubMed  Google Scholar 

  24. Choi, M.-J., Xiao, Y., Hwang, J.-Y., Belharouak, I., and Sun, Y.-K., Novel strategy to improve the Li-storage performance of micro silicon anodes, J. Power Sources, 2017, vol. 348, p. 302.

    Article  CAS  Google Scholar 

  25. Sakabe, J., Ohta, N., Ohnishi, T., Mitsuishi, K., and Takada, K., Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries, Commun. Chem., 2018, vol. 1, no. 24.

  26. Gangaja, B., Nair, S., and Santhanagopalan, D., Surface-engineered Li4Ti5O12 nanostructures for high-power Li-ion batteries, Nano-Micro Lett., 2020, vol. 12, p. 30.

    Article  CAS  Google Scholar 

  27. Zhang, S.M., Zhang, J.X., Xu, S.J., Yuan, X.J., and He, B.C., Li-ion diffusivity and electrochemical properties of FePO4 nanoparticles acted directly as cathode materials in lithium ion rechargeable batteries, Electrochim. Acta, 2013, vol. 88, p. 287.

    Article  CAS  Google Scholar 

  28. Luo, Y., Guo, R., Li, T., Li, F., Liu, Z., Zheng, M., Wang, B., Yang, Z., Luo, H., and Wan, Y., Application of polyaniline for Li-ion batteries, lithium–sulfur batteries, and supercapacitors, ChemSusChem, 2019, vol. 12, p. 1591.

    Article  CAS  PubMed  Google Scholar 

  29. Yaroslavtsev, A.B. and Stenina, I.A., Carbon coating of electrode materials for lithium-ion batteries, Surf. Innov., 2021, vol. 9, p. 92.

    Article  Google Scholar 

  30. Gong, C., Xue, Z., Wen, S., Ye, Y., and Xie, X., Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries, J. Power Sources, 2016, vol. 318, p. 93.

    Article  CAS  Google Scholar 

  31. Eftekhari, A., LiFePO4/C nanocomposites for lithium-ion batteries, J. Power Sources, 2017, vol. 3431, p. 395.

    Article  CAS  Google Scholar 

  32. Guan, P., Zhou, L., Yu, Z., Sun, Y., Liu, Y., Wu, F., Jiang, Y., and Chu, D., Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries, J. Energy Chem., 2020, vol. 43, p. 220.

    Article  Google Scholar 

  33. Mauger, A. and Julien, C., Surface modifications of electrode materials for lithium-ion batteries: status and trends, Ionics, 2014, vol. 20, p. 751.

    Article  CAS  Google Scholar 

  34. Nisar, U., Muralidharan, N., Essehli, R., Amin, R., and Belharouak, I., Valuation of surface coatings in high-energy density lithium-ion battery cathode materials, Energy Stor. Mater., 2021, vol. 38, p. 309.

    Article  Google Scholar 

  35. Kosova, N.V., Podgornova, O.A., Volfkovich, Yu.M., and Sosenkin, V.E., Optimization of the cathode porosity via mechanochemical synthesis with carbon black, J. Solid State Electrochem., 2021, vol. 25, p. 1029.

    Article  CAS  Google Scholar 

  36. Li, H. and Zhou, H., Enhancing the performances of Li-ion batteries by carbon-coating: present and future, Chem. Commun., 2012, vol. 48, p. 1201.

    Article  CAS  Google Scholar 

  37. Novikova, S., Yaroslavtsev, S., Rusakov, V., Kulova, T., Skundin, A., and Yaroslavtsev, A., \({{{\text{LiF}}{{{\text{e}}}_{{1-x}}}{\text{M}}_{x}^{{{\text{II}}}}{\text{P}}{{{\text{O}}}_{4}}} \mathord{\left/ {\vphantom {{{\text{LiF}}{{{\text{e}}}_{{1-x}}}{\text{M}}_{x}^{{{\text{II}}}}{\text{P}}{{{\text{O}}}_{4}}} {\text{C}}}} \right. \kern-0em} {\text{C}}}\) (MII = Co, Ni, Mg) as cathode materials for lithium-ion batteries, Electrochim. Acta, 2014, vol. 122, p. 180.

    Article  CAS  Google Scholar 

  38. Lu, J., Nan, C., Peng, O., and Li, Y., Single crystalline lithium titanate nanostructure with enhanced rate performance for lithium ion battery, J. Power Sources, 2012, vol. 202, p. 246.

    Article  CAS  Google Scholar 

  39. Yi, T.-F., Yang, S.-Y., and Xie, Y., Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 5750.

    Article  CAS  Google Scholar 

  40. Chauque, S., Oliva, F.Y., Visintin, A., Barraco, D., Leiva, E.P.M., and Cámara, O.R., Lithium titanate as anode material for lithium-ion batteries: Synthesis, posttreatment and its electrochemical response, J. Electroanal. Chem., 2017, vol. 799, p. 142.

    Article  CAS  Google Scholar 

  41. Kulova, T.L., Skundin, A.M., Kreshchenova, Y.M., Kuz’mina, A.A., Stenina, I.A., and Yaroslavtsev, A.B., New high-capacity anode materials based on gallium-doped lithium titanate, Mendeleev Commun., 2016, vol. 26, p. 238.

    Article  CAS  Google Scholar 

  42. Han, C., He, Y.-B., Wang, S., Wang, C., Du, H., Qin, X., Lin, Z., Li, B., and Kang, F., Large polarization of Li4Ti5O12 lithiated to 0 V at large charge/discharge rates, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 18788.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, J., Wei. X., and Meng, F., Lithium titanate-based lithium-ion batteries, in Advanced Battery Materials, Sun, C., Ed., Beverly: Scrivener, 2019, p. 87.

    Google Scholar 

  44. Zhang, Y., Hu, X., Xu, Y., and Chen, Ch., Preparation and electrochemical properties of Li4Ti5O12/C anode material by facile solid-state reaction, Solid State Ionics, 2015, vol. 276, p. 18.

    Article  CAS  Google Scholar 

  45. Stenina, I.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., High grain boundary density Li4Ti5O12/anatase-TiO2 nanocomposites as anode material for Li-ion batteries, Mater. Res. Bull., 2016, vol. 75, p. 178.

    Article  CAS  Google Scholar 

  46. Cheng, Q., Tang, S., Liang, J., Zhao, J., Lan, Q., Liu, C., and Cao, Y.-C., High rate performance of the carbon encapsulated Li4Ti5O12 for lithium-ion battery, Res. Phys., 2017, vol. 7, p. 810.

    Google Scholar 

  47. Gangaja, B., Nair, S., and Santhanagopalan, D., Surface-engineered Li4Ti5O12 nanostructures for high-power Li-ion batteries, Nano-Micro Lett., 2020, vol. 12, p. 30.

    Article  CAS  Google Scholar 

  48. Xiang, Y., Zhao, P., Jin, Z., Chen, B., Ming, H., Zhang, H., Zhang, W., Cao, G., and Zhu, X., Three-dimensional and mesopore-oriented graphene conductive framework anchored with nano-Li4Ti5O12 particles as an ultrahigh rate anode for lithium-ion batteries, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 42258.

    Article  CAS  PubMed  Google Scholar 

  49. Yan, H., Yao, W., Fan, R., Zhang, Y., Luo, J., and Xu, J., Mesoporous hierarchical structure of Li4Ti5O12/ graphene with high electrochemical performance in lithium-ion batteries, ACS Sust. Chem. Engineer., 2018, vol. 6, p. 11360.

    Article  CAS  Google Scholar 

  50. Stenina, I., Shaydullin, R., Kulova, T., Kuz’mina, A., Tabachkova, N., and Yaroslavtsev, A., Effect of carbon additives on the electrochemical performance of Li4Ti5O12/C anodes, Energies, 2020, vol. 13, no. 3941.

  51. Varzi, A., Ramirez-Castro, C., Balducci, A., and Passerini, S., Performance and kinetics of LiFePO4–carbon bi-material electrodes for hybrid devices: A comparative study between activated carbon and multi-walled carbon nanotubes, J. Power Sources, 2015, vol. 273, p. 1016.

    Article  CAS  Google Scholar 

  52. Li, W., Garg, A., Le, M.L.P., Ruhatiya, C., Gao, L., and Tran, V.M., Electrochemical performance investigation of LiFePO4/C0.15 – x (x = 0.05, 0.1, 0.15 CNTs) electrodes at various calcination temperatures: Experimental and intelligent modelling approach, Electrochim. Acta, 2020, vol. 330, no. 135314.

  53. Gao, C., Liu, H., Bi, S., Fan, S., Meng, X., Li, Q., and Luo, C., Insight into the effect of graphene coating on cycling stability of LiNi0.5Mn1.5O4: Integration of structure-stability and surface stability, J. Materiomics, 2020, vol. 6, p. 712.

    Article  Google Scholar 

  54. Lin, Z., Yang, Y., Jin, J., Wei, L., Chen, W., Lin, Y., and Huang, Z., Graphene-wrapped Li4Ti5O12 hollow spheres consisting of nanosheets as novel anode material for lithium-ion batteries, Electrochim. Acta, 2017, vol. 254, p. 287.

    Article  CAS  Google Scholar 

  55. Hu, Y., Lin, F., and Liu, Z., Three-dimensional carbon nanotube-scaffolded Li4Ti5O12@C microsphere with enhanced rate property for electrochemical energy storage, Ceramics Int., 2019, vol. 45, p. 10976.

    Article  CAS  Google Scholar 

  56. Li, S. and Mao, J., The influence of different types of graphene on the lithium titanate anode materials of a lithium ion battery, J. Electron. Mater., 2018, vol. 47, p. 5410.

    Article  CAS  Google Scholar 

  57. Wei, A., Li, W., Bai, X., Zhang, L., Liu, Z., and Wang, Y., A facile one-step solid-state synthesis of a Li4Ti5O12/graphene composite as an anode material for high-power lithium-ion batteries, Solid State Ionics, 2019, vol. 329, p. 110.

    Article  CAS  Google Scholar 

  58. Zhang, P., Chen, M., Shen, X., Wu, Q., Zhang, X., Huan, L., and Diao, G. Preparation of Li4Ti5O12 nanosheets/carbon nanotubes composites and application of anode materials for lithium-ion batteries, Electrochim. Acta, 2016, vol. 204, p. 92.

    Article  CAS  Google Scholar 

  59. Stenina, I.A., Shaydullin, R.R., Desyatov, A.V., Kulova, T.L., and Yaroslavtsev, A.B., Effect of carbon and N-doped carbon nanomaterials on the electrochemical performance of lithium titanate-based composites, Electrochim. Acta, 2020, vol. 364, no. 137330.

  60. Zhang, F., Yi, F., Gao, A., Shu, D., Sun, Z., Mao, J., Zhou, X., Zhu, Z., and Sun, Y., Interfacial electrostatic self-assembly in water-in-oil microemulsion assisted synthesis of Li4Ti5O12/graphene for lithium-ion-batteries, J. Alloys Compd., 2020, vol. 819, no. 153018.

  61. Stenina, I.A., Sobolev, A.N., Yaroslavtsev, S.A., Rusakov, V.S., Kulova, T.L., Skundin, A.M., and Yaroslav-tsev, A.B., Influence of iron doping on structure and electrochemical properties of Li4Ti5O12, Electrochim. Acta, 2016, vol. 219, p. 524.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was performed using the equipment of the JRC PMR IGIC RAS.

Funding

This study was supported by the Russian Foundation for Basic Research (grant no. 20-08-00769).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Yaroslavtsev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

A tribute to outstanding electrochemist Oleg Aleksandrovich Petrii (1937–2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenina, I.A., Kulova, T.L., Desyatov, A.V. et al. Composites Based on Lithium Titanate with Carbon Nanomaterials as Anodes for Lithium-Ion Batteries. Russ J Electrochem 58, 658–666 (2022). https://doi.org/10.1134/S1023193522080110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522080110

Keywords:

Navigation