Skip to main content

Advertisement

Log in

Surface modifications of electrode materials for lithium-ion batteries: status and trends

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The research on the electrodes of Li-ion batteries aims to increase the energy density and the power density, improve the calendar and the cycling life, without sacrificing the safety issues. A constant progress through the years has been obtained owing to the surface treatment of the particles, in particular the coating of the particles with a layer that protects the core region from side reactions with the electrolyte, prevents the loss of oxygen, and the dissolution of the metal ions in the electrolyte, or simply improve the conductivity of the powder. The purpose of the present work is to review the different surface modifications that have been tried in the past for the different electrodes that are currently commercialized, or considered as promising, including the three families of positive electrodes (lamellar, spinel, and olivine families) and the three negative electrodes (carbon, Li4Ti5O12, and silicon). The role of the different coats used to improve either the surface conductivity, or the thermal stability, or the structural integrity is discussed. The limits in the efficiency of these different coats are also analyzed along with the understanding of the surface modifications that have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wu YP, Wan C, Jiang C, Fang SB (2002) Lithium ion secondary batteries. Chemical Industry Press, Beijing

    Google Scholar 

  2. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    CAS  Google Scholar 

  3. Zaghib K, Mauger A, Julien CM (2012) Overwiew of olivines in lithium batteries for green transportation and energy storage. J Solid State Electrochem 16:835–845

    CAS  Google Scholar 

  4. Zaghib K, Dubé J, Dallaire A, Galoustov K, Guerfi A, Ramanathan M, Benmayza A, Prakash J, Mauger A, Julien CM (2012) Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries. J Power Sources 219:36–44

    CAS  Google Scholar 

  5. Zaghib K, Dubé J, Dallaire A, Galoustov K, Guerfi A, Ramanathan M, Benmayza A, Prakash J, Mauger A, Julien CM (2014) Lithium ion cell components and their effect on high-power battery safety. In: Pistoia G (ed) Lithium-ion batteries: advances and applications. Elsevier, New York, pp 437–460

    Google Scholar 

  6. Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Cathode materials modified by surface coating for lithium ion batteries. Electrochim Acta 51:3872–3888

    CAS  Google Scholar 

  7. Julien CM, Mauger A (2013) Review of 5-V electrodes for Li-ion batteries: status and trends. Ionics 19:951–988

    CAS  Google Scholar 

  8. Wu C, Fang X, Guo XW, Mao Y, Ma J, Zhao CC, Wang ZX, Chen L (2013) Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole. J Power Sources 231:44–49

    CAS  Google Scholar 

  9. Lee EH, Park JH, Cho JH, Cho SJ, Kim DW, Dan H, Kang Y, Lee SY (2013) Direct ultr-violet-assisted conformal coating of nanometer-thick poly(tri(2-(acryloyloxy)ethyl) phosphate gel polymer electrolytes on high-voltage LiNi1/3Co1/3Mn1/3O2 cathodes. J Power Sources 244:389–394

    CAS  Google Scholar 

  10. Bang HJ, Joachin H, Yang H, Amine K, Prakash J (2006) Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells batteries, fuel cells, and energy conversion. J Electrochem Soc 153:A731–A737

    CAS  Google Scholar 

  11. Croguennec L, Pouillerie C, Delmas C (2000) NiO2 obtained by electrochemical lithium deintercalation from lithium nickelate: structural modifications. J Electrochem Soc 147:1314–1321

    CAS  Google Scholar 

  12. Dokko K, Nishizawa M, Horikoshi S, Itoh T, Mohamedi M, Uchida I (2000) In situ observation of LiNiO2 single-particle fracture during Li-ion extraction and insertion. Electrochem Solid-State Lett 3:125–127

    CAS  Google Scholar 

  13. Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381:499–500

    CAS  Google Scholar 

  14. Ohzuku T, Ueda A (1994) Solid-state redox reactions of LiCoO2 (R-3m) for 4 volt secondary lithium cells. J Electrochem Soc 141:2972–2977

    CAS  Google Scholar 

  15. Reimers JN, Dahn JR (1992) Electrochemical and in situ X-ay diffraction studies of lithium intercalation in Li x CoO2. J Electrochem Soc 139:2091–2097

    CAS  Google Scholar 

  16. Jang Y, Haung B, Sadoway DR, Ceder G, Chiang Y, Liu H, Tamura HJ (1999) LiAl y Co1−y O2 (R-3m) intercalation electrode for rechargeable lithium batteries. J Electrochem Soc 146:862–868

    CAS  Google Scholar 

  17. Tukamoto H, West AR (1997) Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J Electrochem Soc 144:3164–3168

    CAS  Google Scholar 

  18. Myung ST, Kumagai N, Komaba S, Chung HT (2001) Effects of Al doping on the microstructure of LiCoO2 cathode materials. Solid State Ionics 139:47–56

    CAS  Google Scholar 

  19. Cho JP, Kim YJ, Park B (2001) LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase. J Electrochem Soc 148:A1110–A1115

    CAS  Google Scholar 

  20. Cho J, Kim YJ, Park B (2000) Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem Mater 12:3788–3791

    CAS  Google Scholar 

  21. Kweon HJ, Park JJ, Seo JW, Kim GB, Jung BH, Lim HS (2004) Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoO2 in a Li-ion cell. J Power Sources 126:156–162

    CAS  Google Scholar 

  22. Cho J, Kim YJ, Kim TJ, Park B (2001) Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew Chem Int Ed 40:3367–3369

    CAS  Google Scholar 

  23. Fey GTK, Weng ZX, Chen JG, Lu CZ, Kumar TP, Naik SP, Chiang AST, Lee DC, Lin JR (2004) Preformed boehmite nanoparticles as coating materials for long-cycling LiCoO2. J Appl Electrochem 34:715–722

    CAS  Google Scholar 

  24. Liu LJ, Chen Q, Huang XJ, Yang XQ, Yoon WS, Lee HS, McBreen J (2004) electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material. J Electrochem Soc 151:A1344–A1351

    CAS  Google Scholar 

  25. Oh S, Lee JK, Byuna D, Cho W, Cho BW (2004) Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries. J Power Sources 132:249–255

    CAS  Google Scholar 

  26. Kim YJ, Kim TJ, Shin JW, Park B, Cho J (2002) The effect of Al2O3 coating on the cycle life performance in thin-film LiCoO2 cathodes. J Electrochem Soc 149:A1337–A1341

    CAS  Google Scholar 

  27. Fey GTK, Chen JG, Kumar TP (2005) Carboxylate-alumoxanes as precursors for alumina coatings to enhance the cyclability of LiCoO2. J Power Sources 146:250–253

    CAS  Google Scholar 

  28. Riley LA, Van Atta S, Cavanagh AS, Yan Y, George SM, Liu P, Dillon AC, Lee SH (2011) Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. J Power Sources 196:3317–3324

    CAS  Google Scholar 

  29. Yang Z, Li XH, Wang ZX, Zhu YJ (2007) Surface modification of spherical LiNi1/3Co1/3Mn1/3O2 with Al2O3 using heterogeneous nucleation process. Trans Nonferrous Metals Soc China 17:1319–1323

    CAS  Google Scholar 

  30. Huang Y, Chen J, Cheng F, Wan W, Liu W, Zhou H, Zhang X (2010) A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process. J Power Sources 195:8267–8274

    CAS  Google Scholar 

  31. Myung ST, Izumi K, Komaba S, Sun YK, Yashiro H, Kumagai N (2005) Role of alumina coating on Li–Ni–Co–Mn–O particles as positive electrode material for lithium-ion batteries. Chem Mater 17:3695–3704

    CAS  Google Scholar 

  32. Bettge M, Li Y, Sankaran B, Dietz-Rago N, Spila T, Haasch RT, Petrov I, Abraham DP (2013) Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifying the positive electrode with alumina. J Power Sources 233:346–357

    CAS  Google Scholar 

  33. Liu J, Manthiram A (2010) Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode. J Mater Chem 20:3961–3967

    CAS  Google Scholar 

  34. Appapillai AT, Mansour AN, Cho J, Shao-Horn Y (2007) Microstructure of LiCoO2 with and without AlPO4 nanoparticle coating: combined STEM and XPS studies. Chem Mater 19:5748–5757

    CAS  Google Scholar 

  35. Cho J, Kim TG, Kim C, Lee JG, Kim YW, Park B (2005) Comparison of Al2O3- and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell. J Power Sources 146:58–64

    CAS  Google Scholar 

  36. Zeng Y, He J (2009) Surface structure investigation of LiNi0.8Co0.2O2 by AlPO4 coating and using functional electrolyte. J Power Sources 189:519–521

    CAS  Google Scholar 

  37. Wu Y, Murugan AV, Manthiram A (2008) Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4. J Electrochem Soc 155:A635–A641

    CAS  Google Scholar 

  38. Wang QY, Liu J, Vadivel Murugan A, Manthiram A (2009) High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability. J Mater Chem 19:4965–4972

    CAS  Google Scholar 

  39. Cho J (2003) Correlation between AlPO4 nanoparticle coating thickness on LiCoO2 cathode and thermal stability. Electrochim Acta 48:2807–2811

    CAS  Google Scholar 

  40. Lee JG, Kim B, Cho J, Kim YW, Park B (2004) Effect of AlPO4-nanoparticle coating concentration on high-cutoff-voltage electrochemical performances in LiCoO2. J Electrochem Soc 151:A801–A805

    CAS  Google Scholar 

  41. Cho J (2004) Dependence of AlPO4 coating thickness on overcharge behaviour of LiCoO2 cathode material at 1 and 2 C rates. J Power Sources 126:186–189

    CAS  Google Scholar 

  42. Cho J, Kim H, Park B (2004) Comparison of overcharge behavior of AlPO4-coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 cathode materials in Li-ion cells. J Electrochem Soc 151:A1707–A1711

    CAS  Google Scholar 

  43. Cho J, Kim B, Lee JG, Kim YW, Park B (2005) Annealing-temperature effect on various cutoff-voltage electrochemical performances in AlPO4-nanoparticle-coated LiCoO2. J Electrochem Soc 152:A32–A36

    CAS  Google Scholar 

  44. Kim B, Lee JG, Choi M, Cho J, Park B (2004) Correlation between local strain and cycle-life performance of AlPO4-coated LiCoO2 cathodes. J Power Sources 126:190–192

    CAS  Google Scholar 

  45. Kim J, Noh M, Cho J, Kim HM, Kim HB (2005) Controlled nanoparticle metal phosphates (metal=Al, Fe, Ce and Sr) coatings on LiCoO2 cathode materials batteries, fuel cells, and energy conversion. J Electrochem Soc 152:A1142–A1148

    CAS  Google Scholar 

  46. Jung E, Park YJ (2012) Characterization of thermally aged AlPO4-coated LiCoO2 thin films. Nanoscale Res Lett 7:12–16

    Google Scholar 

  47. Kim HS, Kim Y, Kim SI, Martin SW (2006) Enhanced electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material by coating with LiAlO2 nanoparticles. J Power Sources 161:623–627

    CAS  Google Scholar 

  48. Kim Y, Kimb HS, Martin SW (2006) Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries. Electrochim Acta 52:1316–1322

    CAS  Google Scholar 

  49. Liu J, Reeja-Jayan B, Manthiram A (2010) Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. J Phys Chem C 114:9528–9533

    CAS  Google Scholar 

  50. Cho J, Park B (2005) Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material. J Power Sources 92:35–39

    Google Scholar 

  51. Fey GTK, Yang HZ, Kumar TP, Naik SP, Chiang AST, Lee DC, Lin JR (2004) A simple mechano-thermal coating process for improved lithium battery cathode materials. J Power Sources 132:172–180

    CAS  Google Scholar 

  52. Chen ZH, Dahn JR (2003) Studies of LiCoO2 coated with metal oxides. Electrochem Solid-State Lett 6:A221–A224

    CAS  Google Scholar 

  53. Chen ZH, Dahn JR (2004) Improving the capacity retention of LiCoO2 cycled to 4.5 V by heat-treatment. Electrochem Solid-State Lett 7:A11–A14

    CAS  Google Scholar 

  54. Kiziltas-Yavuz N, Herklotz M, Hashem AM, Abuzeid HM, Schwarz B, Ehrenberg H, Mauger A, Julien CM (2013) Synthesis, structural, magnetic and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 prepared by a sol–gel method using table sugar as chelating agent. Electrochim Acta 113:313–321

    CAS  Google Scholar 

  55. Manthiram A, Goodenough JB (1987) Lithium insertion into Fe2(MO4)3 frameworks: comparison of M=W with M=Mo. J Solid State Chem 71:349–360

    CAS  Google Scholar 

  56. Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H (1993) Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochim Acta 38:1159–1167

    CAS  Google Scholar 

  57. Chen JG, Devries BD, Lewandowski JT, Hall RB (1994) Direct differentiation of surface and bulk compositions of powder catalysts: application of electron-yield and fluorescence-yield NEXAFS to Li x Ni1−x O. Catal Lett 23:25–35

    Google Scholar 

  58. Nohma T, Kurokawa H, Uehara M, Takahashi M, Nishio K, Saito T (1995) Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries. J Power Sources 54:522–524

    CAS  Google Scholar 

  59. Chang CC, Scarr N, Kumta PN (1998) Synthesis and electrochemical characterization of LiMO2 (M=Ni, Ni0.75Co0.25) for rechargeable lithium ion batteries. Solid State Ionics 112:329–344

    CAS  Google Scholar 

  60. Fey GTK, Weng ZX, Chen JG, Kumar TP (2003) Electroanalytical studies on sol–gel derived LiNi0.8Co0.2O2. Mater Chem Phys 82:5–15

    CAS  Google Scholar 

  61. Matsumoto K, Kuzuo R, Takeya K, Yamanaka J (1999) Effects of CO2 in air on Li deintervalation from LiNi1−xy Co z Al y O2. J Power Sources 81–82:558–561

    Google Scholar 

  62. Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M (2000) The study of surface phenomena related to electrochemical lithium intercalation into Li x MO y host materials (M=Ni, Mn). J Electrochem Soc 147:1322–1331

    CAS  Google Scholar 

  63. Andersson AM, Abraham DP, Haasch R, MacLaren S, Liu J, Amine K (2002) Surface characterization of electrodes from high power lithium-ion batteries. J Electrochem Soc 149:A1358–A1369

    CAS  Google Scholar 

  64. Badot JC, Bianchi V, Baffier N, Belhadj-Tahar N (2002) Dielectric and conductivity spectroscopy of Li1−x Ni1+x O2 in the range of 10–1010 Hz: polaron hopping. J Phys Condens Matter 14:6917–6930

    CAS  Google Scholar 

  65. Kim HK, Seong TY, Cho W, Yoon YS (2002) Rapid thermal annealing effect on surface of LiNi1−x Co x O2 cathode film for thin-film microbattery. J Power Sources 109:178–183

    CAS  Google Scholar 

  66. Zhang X, Jiang WJ, Zhu XP, Mauger A, Qilu JCM (2011) Aging of LiNi1/3Mn1/3Co1/3O2 cathode material upon exposure to H2O. J Power Sources 196:5102–5108

    CAS  Google Scholar 

  67. Moshtev R, Zlatilova P, Vasilev S, Bakalova I, Kozawa A (1999) Synthesis, XRD characterization and electrochemical performance of over lithiated LiNiO2. J Power Sources 81:434–441

    Google Scholar 

  68. Zhuang GV, Chen G, Shim J, Song X, Ross PN Jr, Richardson TJ (2004) Li2Co3 in LiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power. J Power Sources 134:293–297

    CAS  Google Scholar 

  69. Li D, Kato Y, Kobayakawa K, Noguchi H, Sato Y (2006) Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating. J Power Sources 160:1342–1348

    CAS  Google Scholar 

  70. Kweon HJ, Kim SJ, Park DG (2000) Modification of Li x Ni1−y Co y O2 by applying a surface coating of MgO. J Power Sources 88:255–261

    CAS  Google Scholar 

  71. Wang Z, Wu C, Liu L, Wu F, Chen L, Huang X (2002) Electrochemical evaluation and structural characterization of commercial LiCoO2 surfaces modified with MgO for lithium-ion batteries. J Electrochem Soc 149:A466–A471

    CAS  Google Scholar 

  72. Mladenov M, Stoyanova R, Zhecheva E, Vassilev S (2001) Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes. Electrochem Commun 3:410–416

    CAS  Google Scholar 

  73. Zhao H, Gao L, Qiu W, Zhang X (2004) Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating. J Power Sources 132:195–200

    CAS  Google Scholar 

  74. Wang ZX, Lui LJ, Chen LQ, Huang XJ (2002) Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries. Solid State Ionics 148:335–342

    CAS  Google Scholar 

  75. Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2005) Electrode materials for lithium secondary batteries prepared by sol–gel methods. Prog Mater Sci 50:881–928

    CAS  Google Scholar 

  76. Iriyama Y, Kurita H, Yamada I, Abe T, Ogumi Z (2004) Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode. J Power Sources 137:111–116

    CAS  Google Scholar 

  77. Cho J, Kim CS, Yoo SI (2000) Improvement of structural stability of LiCoO2 cathode during electrochemical cycling by sol–gel coating of SnO2. Electrochem Solid-State Lett 3:362–365

    CAS  Google Scholar 

  78. Liu Y, Liu S, Wang Y, Chen L, Chen X (2013) Effect of MnO2 modification on electrochemical performance of LiNi0.2Li0.2Mn0.6O2 layered solid solution cathode. J Power Sources 222:455–460

    CAS  Google Scholar 

  79. Hovington P, Dontigny M, Guerfi A, Trottier J, Lagacé M, Mauger A, Julien CM, Zaghib K (2014) In situ scanning electron microscope study and microstrctural evolution of nano silicon anode for high energy Li-ion batteries. J Power Sources 248:457–464

    CAS  Google Scholar 

  80. Gao J, Kim J, Manthiram A (2009) High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2–V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries. Electrochem Commun 11:84–86

    CAS  Google Scholar 

  81. Liu X, He P, Li H, Ishida M, Zhou H (2013) Improvement of electrochemical properties of LiNi1/3Co1/3Mn1/3O2 by coating with V2O5 layer. J Alloys Compd 552:76–82

    CAS  Google Scholar 

  82. Zhang F, Passerini S, Owens BB, Smyrl WH (2001) Nanocomposites of V2O5 aerogel and RuO2 as cathode materials for lithium intercalation. Electrochem Solid-State Lett 4:A221–A223

    CAS  Google Scholar 

  83. Zhang ZR, Liu HS, Gong ZL, Yang Y (2004) Electrochemical performance and spectroscopic characterization of TiO2-coated LiNi0.8Co0.2O2 cathode materials. J Power Sources 129:101–106

    CAS  Google Scholar 

  84. Li JG, Fan M, He XM, Zhao R, Jiange CY, Wan CR (2006) TiO2 coating of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. Ionics 12:215–218

    CAS  Google Scholar 

  85. Wu F, Wang M, Su Y, Chen S, Xu B (2009) Effect of TiO2-coating on the electrochemical performances of LiCo1/3Ni1/3Mn1/3O2. J Power Sources 191:628–632

    CAS  Google Scholar 

  86. Fey GTK, Lu CZ, Kumar TP, Chang YC (2005) TiO2 coating for long-cycling LiCoO2: a comparison of coating procedures. Surf Coat Technol 199:22–31

    Google Scholar 

  87. Liu H, Cheng C, Hu Z, Zhang K (2007) The effect of ZnO coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries. Mater Chem Phys 101:276–279

    CAS  Google Scholar 

  88. Wu F, Wang M, Su YF, Chen S (2009) Surface modification of LiCo1/3Ni1/3Mn1/3O2 by TiO2-coating. Acta Physico-Chimica Sinica 25:629–634

    CAS  Google Scholar 

  89. Wu F, Wang M, Su YF, Chen S, Xu B (2006) Surface chemistry of LiCoO2 coated with alumina. Solid State Ionics 179:1745–1749

    Google Scholar 

  90. Chen YD, Zhao Y, Lai QY, Wei NN, Lu JZ, Hu XG, Ji XY (2008) Preparation of TiO2-coated LiCo1/3Ni1/3Mn1/3O2 by electrostatic self-assembly method and its properties. Ionics 14:53–58

    Google Scholar 

  91. Basch A, Albering JH (2011) Preparation and characterization of core-shell battery materials for Li-ion batteries manufactured by substrate induced coagulation. J Power Sources 196:3290–3295

    CAS  Google Scholar 

  92. Sakuda A, Hayashi A, Tatsumisago M (2010) Electrochemical performance of all-solid-state lithium secondary batteries improved by the coating of Li2O–TiO2 films on LiCoO2 electrode. J Power Sources 195:599–603

    CAS  Google Scholar 

  93. Chen ZH, Dahn JR (2002) Effect of a ZrO2 coating on the structure and electrochemistry of Li x CoO2 when cycled to 4.5 V. Electrochem Solid-State Lett 5:A213–A216

    CAS  Google Scholar 

  94. Chung KY, Yoon WS, McBreen J, Yang XQ, Oh SH, Shin HC, Cho WI, Cho BW (2007) In situ X-ray diffraction studies on the mechanism of capacity retention improvement by coating at the surface of LiCoO2. J Power Sources 174:619–623

    CAS  Google Scholar 

  95. Huang Y, Jitao Chen J, Ni J, Zhou H, Zhang X (2009) A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. J Power Sources 188:538–545

    CAS  Google Scholar 

  96. Machida N, Kashiwagi J, Naito M, Shigematsu T (2012) Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2 as cathode materials. Solid State Ionics 225:354–358

    CAS  Google Scholar 

  97. Kim YJ, Cho J, Kim TJ, Park B (2003) Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings. J Electrochem Soc 150:A1723–A1725

    CAS  Google Scholar 

  98. Miyashiro H, Yamanaka A, Tabuchi M, Seki S, Nakayama M, Ohno Y, Kobayashi Y, Mita Y, Usami A, Wakihara M (2006) Improvement of degradation at elevated temperature and at high state-of-charge storage by ZrO2 coating on LiCoO2. J Electrochem Soc 153:A348–A353

    CAS  Google Scholar 

  99. Chung KY, Yoon WS, Lee HS, McBreen J, Yang XQ, Oh SH, Ryu WH, Lee JL, Cho WI, Cho BW (2006) In situ XRD studies of the structural changes of ZrO2-coated LiCoO2 during cycling and their effects on capacity retention in lithium batteries. J Power Sources 163:185–190

    CAS  Google Scholar 

  100. Guo R, Shi P, Sheng X, Sun L (2009) Effect of ZnO modification on the performance of LiNi0.5Co0.25Mn0.25O2 cathode material. Electrochim Acta 54:5796–5803

    CAS  Google Scholar 

  101. Chang W, Choi JW, Im JC, Lee JK (2010) Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries. J Power Sources 195:320–326

    CAS  Google Scholar 

  102. Tan L, Liu H (2011) Influence of ZnO coating on the structure, morphology an electrochemical performance for LiNi1/3Co1/3Mn1/3O2 material. Russ J Electrochem 47:156–160

    CAS  Google Scholar 

  103. Ha HW, Yun NJ, Kim MH, Woo MH, Kim K (2006) Enhanced electrochemical and thermal stability of surface-modified LiCoO2 cathode by CeO2 coating. Electrochim Acta 51:3297–3302

    CAS  Google Scholar 

  104. Ha HW, Jeong KH, Yun NJ, Hong MZ, Kim K (2005) Effects of surface modification on the cycling stability of LiNi0.8Co0.2O2 electrodes by CeO2 coating. Electrochim Acta 50:3764–3769

    CAS  Google Scholar 

  105. Wu F, Wang M, Su Y, Bao L, Chen S (2009) Surface of LiCo1/3Ni1/3Mn1/3O2 modified by CeO2-coating. Electrochim Acta 54:6803–6807

    CAS  Google Scholar 

  106. Fey GTK, Muralidharan P, Lu CZ, Cho YD (2006) Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2. Electrochim Acta 51:4850–4858

    CAS  Google Scholar 

  107. Song HG, Kim JY, Park YJ (2011) Enhanced electrochemical and storage properties of La2/3−x Li2x TiO2-coated Li[Ni0.4Co0.3Mn0.3]O2. Electrochim Acta 56:6896–6905

    CAS  Google Scholar 

  108. Chen JM, Cho YD, Hsiao CL, Fey GTK (2009) Electrochemical studies on LiCoO2 surface coated with Y3Al5O12 for lithium-ion cells. J Power Sources 189:279–287

    CAS  Google Scholar 

  109. Kim HS, Kong M, Kim K, Kim IJ, Gu HB (2007) Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J Power Sources 171:917–921

    CAS  Google Scholar 

  110. Cao Q, Zhang HP, Wang GJ, Xia Q, Wu YP, Wu HQ (2007) A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochem Commun 9:1228–1232

    CAS  Google Scholar 

  111. Kim J, Kim B, Lee JG, Cho J, Park B (2005) Direct carbon-black coating on LiCoO2 cathode using surfactant for high-density Li-ion cell. J Power Sources 139:289–294

    CAS  Google Scholar 

  112. Hashem AMA, Abdel-Ghany AE, Eid AE, Trottier J, Zaghib K, Mauger A, Julien CM (2011) Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery. J Power Sources 196:8632–8637

    CAS  Google Scholar 

  113. Shi SJ, Tu JP, Mai YJ, Zhang YQ, Gu CD, Wang XL (2012) Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries. Electrochim Acta 63:112–117

    CAS  Google Scholar 

  114. Guo R, Shi P, Cheng X, Du C (2009) Synthesis and characterization of carbon-coated LiNi1/3Co1/3Mn1/3O2 cathode material prepared by polyvinyl alcohol pyrolysis route. J Alloys Compd 473:53–59

    CAS  Google Scholar 

  115. Liu J, Wang Q, Reeja-Jayan B, Manthiram A (2010) Carbon-coated high capacity layered Li[Li0.2 Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochem Commun 12:750–753

    CAS  Google Scholar 

  116. Zhang Y, Sun CS, Zhou Z (2009) Sol–gel preparation and electrochemical performances of LiFe1/3Mn1/3Co1/3PO4/C composites with core–shell nanostructure. Electrochem Commun 11:1183–1186

    CAS  Google Scholar 

  117. Zaghib K, Mauger A, Gendron F, Julien CM (2008) Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem Mater 20:462–469

    CAS  Google Scholar 

  118. Takahara H, Takeuchi T, Tabuchi M, Kageyama H, Kobayashi Y, Kurisu Y, Kondo S, Kanno R (2004) All-solid-state lithium secondary battery using oxysulfide glass: addition and coating of carbon to positive electrode. J Electrochem Soc 151:A1539–A1544

    CAS  Google Scholar 

  119. Sun YK, Han JM, Myung ST, Lee SW, Amine K (2006) Significant improvement of high voltage cycling behaviour AlF3-coated LiCoO2 cathode. Electrochem Commun 8:821–826

    CAS  Google Scholar 

  120. Yang ZX, Qiao QD, Yang WS (2011) Improvement of structural and electrochemical properties of commercial LiCoO2 by coating with LaF3. Electrochim Acta 56:4791–4796

    CAS  Google Scholar 

  121. Sun YK, Cho SW, Myung ST, Amine K, Prakash J (2007) Effect of AlF3 coating amount on high voltage cycling performance of LiCoO2. Electrochim Acta 53:1013–1019

    CAS  Google Scholar 

  122. Yang K, Fan LZ, Guo J, Qu XH (2012) Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. Electrochim Acta 63:363–368

    CAS  Google Scholar 

  123. Sun YK, Cho S-W, Li S-W, Yoon CS, Amine K (2007) AlF3-coating to Improve high voltage cycling performance of Li[Ni1/3Co1/3Mn1/3]O2 cathode materials for lithium secondary batteries. J Electrochem Soc 154:A168–A172

    CAS  Google Scholar 

  124. Park BC, Kim HB, Myung ST, Amine K, Belharouak I, Lee SM, Sun YK (2008) Improvement of structural and electrochemical properties of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials on high voltage region. J Power Sources 178:826–831

    CAS  Google Scholar 

  125. Lee KS, Myung ST, Kim DW, Sun YK (2011) AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries. J Power Sources 196:6974–6977

    CAS  Google Scholar 

  126. Kim JH, Park MS, Song JH, Byun DJ, Kim YJ, Kim JS (2012) Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 composite material. J Alloys Compd 517:20–25

    CAS  Google Scholar 

  127. Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B (2012) The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel manganese oxide electrodes for Li-ion batteries. Adv Mater 24:1192–1196

    CAS  Google Scholar 

  128. Zheng JM, Zhang ZR, Wu XB, Dong ZX, Zhu Z, Yang Y (2008) The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery. J Electrochem Soc 155(2008):A775–A782

    CAS  Google Scholar 

  129. Lee HJ, Park YJ (2013) Interface characterization of MgF2-coated LiCoO2 thin films. Solid State Ionics 230:86–91

    CAS  Google Scholar 

  130. Li D, Sasaki Y, Kobayakawa K, Noguchi H, Sato Y (2006) Preparation, morphology and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 with LiF addition. Electrochim Acta 52:643–648

    CAS  Google Scholar 

  131. Yun SH, Park KS, Park YJ (2010) The electrochemical property of ZrF x -coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material. J Power Sources 195:6108–6115

    CAS  Google Scholar 

  132. Zhang J, Xiang YJ, Yu Y, Xie S, Jiang GS, Chen CH (2004) Electrochemical evaluation and modification of commercial lithium cobalt oxide powders. J Power Sources 132:187–194

    CAS  Google Scholar 

  133. Ni J, Zhou H, Chen J, Zhang X (2008) Improved electrochemical performance of layered LiNi0.4Co0.2Mn0.4O2 via Li2ZrO3 coating. Electrochim Acta 53:3075–3083

    CAS  Google Scholar 

  134. Dou J, Kang X, Wumaier T, Yu H, Hua N, Han Y, Xu G (2012) Effect of lithium boron oxide glass coating on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2. J Solid State Electrochem 16:1481–1486

    CAS  Google Scholar 

  135. Cao H, Xia B, Zhang Y, Xu N (2005) LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics 176:911–914

    CAS  Google Scholar 

  136. Cho J, Kim G (1999) Enhancement of thermal stability of LiCoO2 by LiMn2O4 coating. Electrochem Solid-State Lett 2:253–255

    CAS  Google Scholar 

  137. Yoon WS, Chung KY, Nam KW, Kim KB (2006) Characterization of LiMn2O4-coated LiCoO2 film electrode prepared by electrostatic spray deposition. J Power Sources 163:207–210

    CAS  Google Scholar 

  138. Cho J (2003) Direct micron-sized LiMn2O4 particle coating on LiCoO2 cathode material using surfactant. Solid State Ionics 160:241–245

    CAS  Google Scholar 

  139. Jeong SK, Shin JS, Nahm KS, Kumar TP, Stephan AM (2008) Electrochemical studies on cathode blends of LiMn2O4 and Li[Li1/15Ni1/5Co2/5Mn1/3]O2. Mater Chem Phys 111:213–217

    CAS  Google Scholar 

  140. Fey GTK, Wang ZF, Lu CZ, Kumar TP (2005) MgAl2O4 spinel-coated LiCoO2 as long-cycling cathode materials. J Power Sources 146:245–249

    CAS  Google Scholar 

  141. Lee HJ, Park KS, Park YJ (2010) Surface modification of Li[Ni0.3Co0.4Mn0.3]O2 cathode by Li–La–Ti–O coating. J Power Sources 195:6122–6129

    CAS  Google Scholar 

  142. Fey GTK, Huang CF, Muralidharan P, Chang ESS (2007) Improved electrochemical performance of LiCoO2 surface treated with Li4Ti5O12. J Power Sources 174:1147–1151

    CAS  Google Scholar 

  143. Yi TF, Shu J, Wang Y, Xue J, Meng J, Yue CB, Zhu RS (2011) Effect of treated temperature on structure and performance of LiCoO2 coated by Li4Ti5O12. Surf Coat Technol 205:3885–3889

    CAS  Google Scholar 

  144. Gao J, Manthiram A (2009) Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. J Power Sources 191:644–647

    CAS  Google Scholar 

  145. Guan X, Ding B, Liu X, Zhu J, Mi C, Zhang X (2013) Enhancing the electrochemical performance of Li1.2Ni0.2Mn0.6O2 by surface modification with nickel–manganese composite oxide. J Solid State Electrochem 17:2087–2093

    CAS  Google Scholar 

  146. Song HG, Park KS, Park YJ (2012) The effects of LaPO4 coating on the electrochemical properties of Li[Ni0.5Co0.2Mn0.3]O2 cathode material. Solid State Ionics 225:532–537

    CAS  Google Scholar 

  147. Jorgensen S, Horst JA, Dyrlie O, Larring Y, Raeder H, Norby T (2002) XPS surface analyses of LaPO4 ceramics prepared by precipitation with or without excess of PO4 3−. Surf Interface Anal 34:306–310

    CAS  Google Scholar 

  148. Li G, Yang Z, Yang W (2008) Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries. J Power Sources 183:741–748

    CAS  Google Scholar 

  149. Wang Z, Liu E, He C, Shi C, Li J, Zhao N (2013) Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Power Sources 236:25–32

    CAS  Google Scholar 

  150. Bai Y, Wang X, Yang S, Zhang X, Yang X, Shu H, Wu Q (2012) The effects of FePO4-coating on high-voltage cycling stability and rate capability of Li[Ni0.5Co0.2Mn0.3]O2. J Alloys Compd 541:125–131

    CAS  Google Scholar 

  151. Wang H, Zhang WD, Zhu LY, Chen MC (2008) Effect of LiFePO4 coating on electrochemical performance of LiCoO2 at high temperature. Solid State Ionics 178:131–136

    Google Scholar 

  152. Whitacre JF, Zaghib K, West WC, Ratnakumar BV (2008) Dual active material composite cathode structures for Li-ion batteries. J Power Sources 177:528–536

    CAS  Google Scholar 

  153. Kim WS, Kim SB, Jang IC, Lim HH, Lee YS (2010) Remarkable improvement in cell safety for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4. J Alloys Compd 492:L87–L90

    CAS  Google Scholar 

  154. Lee H, Kim MG, Cho J (2007) Olivine LiCoPO4 phase grown LiCoO2 cathode material for high density Li batteries. Electrochem Commun 9:149–154

    CAS  Google Scholar 

  155. Lee SH, Koo BK, Kim JC, Kim KM (2008) Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries. J Power Sources 184:276–283

    CAS  Google Scholar 

  156. Yo CH, Ju JH, Kim GO, Hwang MJ, Ryu KS (2012) C-rate and temperature dependence of electrochemical performance of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode materials before and after Co3(PO4)2 coating. Ionics 18:19–25

    CAS  Google Scholar 

  157. Kim Y, Cho J (2007) Lithium-reactive Co3(PO4)2 nanoparticle coating on high-capacity LiNi0.8Co0.16Al0.04O2 cathode material for lithium rechargeable batteries. J Electrochem Soc 154(2007):A495–A499

    CAS  Google Scholar 

  158. Cho SW, Kim GO, Ryu KS (2012) Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries. Solid State Ionics 206:84–90

    CAS  Google Scholar 

  159. Song HG, Kim JY, Kim KT, Park YJ (2011) Enhanced electrochemical properties of Li(Ni0.4Co0.3Mn0.3)O2 cathode by surface modification using Li3PO4-based materials. J Power Sources 196:6847–6855

    CAS  Google Scholar 

  160. Morimoto H, Awano H, Terashima J, Nakanishi S, Hirama Y, Ishikawa K, Tobishima SI (2012) Charge–discharge properties of LiCoO2 electrodes modified by olivine-type compounds of LiMgPO4 for lithium secondary batteries. J Power Sources 211:66–72

    CAS  Google Scholar 

  161. Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2004) Cathode materials for lithium ion batteries prepared by sol–gel methods. J Solid State Electrochem 8:450–466

    CAS  Google Scholar 

  162. Cho J, Kim TJ, Kim YJ, Park B (2001) High-performance ZrO2-coated LiNiO2 cathode material. Electrochem Solid-State Lett 4:A159–A161

    CAS  Google Scholar 

  163. Zhecheva E, Mladenov MI, Stoyanova R, Vassilev S (2006) Coating technique for improvement of the cycling stability of LiCo/NiO2 electrode materials. J Power Sources 162:823–828

    CAS  Google Scholar 

  164. Yoon WS, Nam KW, Jang D, Chung KY, Hanson J, Chen JM, Yang XQ (2012) Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD. J Power Sources 217:128–134

    CAS  Google Scholar 

  165. Cho J, Kim TJ, Kim J, Noh M, Park B (2004) Synthesis, thermal end electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-ion cell. J Electrochem Soc 151:A1899–A1904

    CAS  Google Scholar 

  166. Tan KS, Reddy MV, Subba Rao GV, Chowdari BVR (2005) Effect of AlPO4-coating on cathodic behaviour of Li(Ni0.8Co0.2)O2. J Power Sources 141:129–142

    CAS  Google Scholar 

  167. Ma X, Wang C, Han X, Sun J (2008) Effect of AlPO4 coating on the electrochemical properties of LiNi0.8Co0.2O2 cathode material. J Alloys Compd 453:352–355

    CAS  Google Scholar 

  168. Cho Y, Cho J (2010) Significant improvement of LiNi0.8Co0.15Al0.05O2 cathodes at 60°C by SiO2 dry coating for Li-ion batteries. J Electrochem Soc 157:A625–A629

    CAS  Google Scholar 

  169. Lee SM, Oh SH, Ahn JP, Cho WI, Jang H (2006) Electrochemical properties of ZrO2-coated LiNi0.8Co0.2O2 cathode materials. J Power Sources 159:1334–1339

    CAS  Google Scholar 

  170. Fey GTK, Muralidharan P, Lu CZ, Cho YD (2005) Surface modification of LiNi0.8Co0.2O2 with La2O3 for lithium-ion batteries. Solid State Ionics 176:2759–2767

    CAS  Google Scholar 

  171. Lee H, Kim Y, Hong YS, Kim Y, Kim MG, Shin NS, Cho J (2006) Structural characterization of the surface-modified Li x Ni0.9Co0.1O2 cathode materials by MPO4 coating (M=Al, Ce, SrH and Fe) for Li-ion cells. J Electrochem Soc 153:A781–A786

    CAS  Google Scholar 

  172. Ryu KS, Lee SH, Koo BK, Lee JW, Kim KM, Park YJ (2008) Effects of Co3(PO4)2 coatings on LiNi0.8Co0.15Al0.05O2 cathodes during application of high current. J Appl Electrochem 38:1385–1390

    CAS  Google Scholar 

  173. Hu GR, Deng XR, Peng ZD, Du K (2008) comparison of AlPO4- and Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode materials for Li-ion battery. Electrochim Acta 53:2567–2573

    CAS  Google Scholar 

  174. Liu H, Zhang Z, Gong Z, Yang Y (2004) A comparative study of LiNi0.8Co0.2O2 cathode materials modified by lattice-doping and surface-coating. Solid State Ionics 166:317–325

    CAS  Google Scholar 

  175. Zhang ZR, Liu HS, Gong ZL, Yang Y (2004) Comparison of electrochemical and surface properties of bare and TiO2-coated LiNi0.8Co0.2O2 electrodes. J Electrochem Soc 151:A599–A603

    CAS  Google Scholar 

  176. Omanda H, Brousse T, Marhic C, Schleich DM (2004) Improvement of the thermal stability of LiNi0.8Co0.2O2 cathode by a SiO x protective coating. J Electrochem Soc 151:A922–A929

    CAS  Google Scholar 

  177. Ju JH, Ryu KS (2011) Synthesis and electrochemical performance of Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 with core–shell structure as cathode material for Li-ion batteries. J Alloys Compd 509:7985–7992

    CAS  Google Scholar 

  178. Woo SU, Yoon CS, Amine K, Belharouak I, Sun YK (2007) Significant improvement of electrochemical performance of AlF3-coated Li[Ni0.8Co0.1Mn0.1]O2 cathode materials. J Electrochem Soc 154:A1005–A1009

    CAS  Google Scholar 

  179. Cho Y, Oh P, Cho J (2013) A new type of protective high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer. Nano Lett 13:1145–1152

    CAS  Google Scholar 

  180. Lin H, Zheng J, Yang Y (2010) The effects of quenching treatment and AlF3 coating in LiNi0.5Mn0.5O2 cathode materials for lithium-ion batteries. Mater Chem Phys 119:519–523

  181. Kang YJ, Kim JH, Lee SW, Sun YK (2005) The effect of Al(OH)2 coating on the Li[Li0.2Ni0.2Mn0.6]O2 cathode material for lithium secondary battery. Electrochim Acta 50:4784–4791

  182. Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149:A815–A822

    CAS  Google Scholar 

  183. Takami N, Inagaki H, Ueno R, Kanda M (2002) Development of laminated thin lithium-ion batteries using LiNi1−xy Co x Al y O2 cathode. Extended Abstract of the 11th International Meeting on Lithium Batteries, Monterey, CA, June 23–28, abstract 371

  184. Cho J, Kim YJ, Kim TJ, Park B (2002) Effect of Al2O3-coated o-LiMnO2 cathodes prepared at various temperatures on the 55°C Cycling behavior. J Electrochem Soc 149:A127–A132

    CAS  Google Scholar 

  185. Cho J, Kim TJ, Park B (2002) The effect of a metal-oxide coating on the cycling behavior at 55°C in orthorhombic LiMnO2 cathode materials. J Electrochem Soc 149:A288–A292

    CAS  Google Scholar 

  186. Abuzeid HM, Hashem AM, Narayanan N, Ehrenberg H, Julien CM (2011) Nanosized silver-coated and doped manganese dioxide for rechargeable lithium batteries. Solid State Ionics 182:108–115

    CAS  Google Scholar 

  187. Hashem AM, Abuzeid H, Nikolowski K, Ehrenberg H (2010) Table sugar as preparation and carbon coating reagent for facile synthesis and coating of rod-shaped MnO2. J Alloys Compd 497:300–303

    CAS  Google Scholar 

  188. Bahloul A, Nesark B, Chelali NE, Groult H, Mauger A, Julien CM (2011) New composite cathode material for Zn//MnO2 cells obtained by electro-deposition of polybithiophene on manganese dioxide particles. Solid State Ionics 204–205:53–60

    Google Scholar 

  189. Hashem AM, Abdel-Latif AM, Abuzeid HM, Abbas HM, Ehrenberg H, Farag RS, Mauger A, Julien CM (2011) Improvement of the electrochemical performance of nanosized α-MnO2 used as cathode material for Li-batteries by Sn-doping. J Alloys Compd 509:9669–9674

    CAS  Google Scholar 

  190. Hashem AM, Abuzeid A, Mikhailova D, Ehrenberg H, Mauger A, Julien CM (2012) Structural and electrochemical properties of α-MnO2 doped with cobalt. J Mater Sci 47:2479–2485

    CAS  Google Scholar 

  191. Thackeray MM, Johnson PJ, de Picciotto LA, Bruce PG, Goodenough JB (1984) Lithium extraction from LiMn2O4. Mater Res Bull 19:179–187

    CAS  Google Scholar 

  192. Amatucci GG, Schmutz CN, Blyr A, Sigala C, Gozdz AS, Larcher D, Tarascon JM (1997) Materials effects on the elevated and room temperature performance of C-LiMn2O4 Li-ion batteries. J Power Sources 69:11–25

    CAS  Google Scholar 

  193. Xia Y, Zhou Y, Yoshio M (1997) Capacity fading on cycling of 4 V Li/LiMn2O4 cells. J Electrochem Soc 144:2593–2600

    CAS  Google Scholar 

  194. Wohlfahrt-Mehrens M, Vogler C, Garche J (2004) Aging mechanisms of lithium cathode materials. J Power Sources 127:58–64

    CAS  Google Scholar 

  195. Xia Y, Zhang Q, Wang H, Nakamura H, Noguchi H, Yoshio M (2007) Improved cycling performance of oxygen-stoichiometric spinel Li1+x Al y Mn2−xy O4−δ at elevated temperature. Electrochim Acta 52:4708–4714

    CAS  Google Scholar 

  196. Jeong IS, Kim JU, Gu HB (2001) Electrochemical properties of LiMg y Mn2−y O4 spinel phases for rechargeable lithium batteries. J Power Sources 102:55–59

    CAS  Google Scholar 

  197. Sun Y, Hong KJ, Prakash J, Amine K (2002) Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures. Electrochem Commun 4:344–348

    CAS  Google Scholar 

  198. Ein-Eli Y, Vaughey JT, Thackeray MM, Mukerjee S, Yang XQ, McBreen J (1999) LiNixCu0.5−xMn1.5O4 spinel electrodes, superior high-potential cathode materials for Li batteries: I. electrochemical and structural studies. J Electrochem Soc 146:908–913

    CAS  Google Scholar 

  199. Molenda J, Marzec J, Świerczek K, Pałubiak D, Ojczyk W, Ziemnicki M (2004) The effect of 3d substitutions in the manganese sublattice on the electrical and electrochemical properties of manganese spinel. Solid State Ionics 175:297–304

    CAS  Google Scholar 

  200. Tian JK, Wan FC, Battaglia VS, Zang HL (2014) Synthesis and electrochemical performance of nanosized multiple-doped LiMn2O4 prepared at low temperature for Li-ion battery. Int J Electrochem Sci 9:931–942

    CAS  Google Scholar 

  201. Arora P, White RE, Doyle M (1998) Capacity fade mechanisms and side reactions in lithium-ion batteries. J Electrochem Soc 145:3647–3667

    CAS  Google Scholar 

  202. Aubarch D, Zaban A, Schlecter A, Ein-Eli Y, Zinigrad E, Markowsky B (1995) The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: I. Li metal anodes. J Electrochem Soc 142:2873–2882

    Google Scholar 

  203. Jang DH, Oh SM (1997) Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li/LixMn2O4 rechargeable cells. J Electrochem Soc 144:3342–3348

    CAS  Google Scholar 

  204. Amatucci GG, Blyr A, Sigala C, Alfonse P, Tarascon JM (1997) Surface treatments of Li1+xMn2−xO4 spinels for improved elevated temperature performance. Solid State Ionics 104:13–25

    CAS  Google Scholar 

  205. Yi TF, Zhu YR, Zhu XD, Shu J, Yue CB, Zhou AN (2009) A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15:779–784

    CAS  Google Scholar 

  206. Kannan AM, Manthiram A (2002) Surface/chemically modified LiMn2O4 cathodes for lithium-ion batteries. Electrochem Solid-State Lett 5:A167–A169

    CAS  Google Scholar 

  207. Lim S, Cho J (2008) PVP-functionalized nanometre scale metal oxide coatings for cathode materials: successful application to LiMn2O4 spinel nanoparticles. Chem Commun 37:4472–4474

    Google Scholar 

  208. Gnanaraj JS, Pol VG, Gedanken A, Aurbach D (2003) Improving the high-temperature performance of LiMn2O4 spinel electrode by coating the active mass with MgO via a sonochemical method. Electrochem Commun 5:940–945

    CAS  Google Scholar 

  209. Lee SW, Kim KS, Moon HS, Kim HJ, Cho BW, Cho WI, Ju JB, Park JB (2004) Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery. J Power Sources 126:50–155

    Google Scholar 

  210. Eftekhari A (2004) Improving cyclability of 5 V cathodes by electrochemical surface modification. Chem Lett 33:616–617

    CAS  Google Scholar 

  211. Tu J, Zhao XB, Cao GS, Zhuang DG, Zhu TJ, Tu JP (2006) Enhanced cycling stability of LiMn2O4 by surface modification with melting impregnation method. Electrochim Acta 51:6456–6462

    CAS  Google Scholar 

  212. Liu D, He Z, Liu X (2007) Increased cycling stability of AlPO4-coated LiMn2O4 for lithium ion batteries. Mater Lett 61:4703–4706

    CAS  Google Scholar 

  213. Yang Z, Yang W, Evans DG, Zhao Y, Wei X (2009) The effect of a Co–Al mixed metal oxide coating on the evaluated temperature performance of a LiMn2O4 cathode material. J Power Sources 189:1147–1153

    CAS  Google Scholar 

  214. Arumugam D, Kalaignan GP (2008) Synthesis and electrochemical characterizations of nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries. J Electroanal Chem 624:197–204

    CAS  Google Scholar 

  215. Zheng Z, Tang Z, Zhang Z, Shen W, Lin Y (2002) Surface modification of Li1.03Mn1.97O4 spinels for improved capacity retention. Solid State Ionics 148:317–321

    CAS  Google Scholar 

  216. Liu DQ, Liu WQ, He Z (2007) Surface modification by ZnO coating for improving the elevated temperature performance of LiMn2O4. J Alloys Compd 436:387–391

    CAS  Google Scholar 

  217. Tu J, Zhao XB, Xie J, Cao GS, Zhuang DG, Zhu TJ, Tu JP (2007) Enhanced low voltage cycling stability of LiMn2O4 cathode by ZnO coating for lithium ion batteries. J Alloys Compd 432:313–317

    CAS  Google Scholar 

  218. Liu H, Cheng C, Hu Z, Zhang K (2005) Improving the elevated temperature performance of Li/LiMn2O4 cells by coating with ZnO. J Mater Sci 40:5767–5769

    CAS  Google Scholar 

  219. Han JM, Myung ST, Sun YK (2006) Improved electrochemical cycling behavior of ZnO-coated Li1.05Al0.1Mn1.85O3.95F0.05 spinel at 55°C. J Electrochem Soc 153:A1290–A1295

  220. Cho J, Kim TJ, Kim YJ, Park B (2001) Complete blocking of Mn3+ ion dissolution from a LiMn2O4 spinel intercalation compound by Co3O4. Chem Commun 12:1074–1075

  221. Yu L, Qiu X, Xi J, Zhu W, Chen L (2006) Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery. Electrochim Acta 51:6406–6411

    CAS  Google Scholar 

  222. Hong YJ, Son MY, Lee JK, Lee HB, Lee SH, Kang YC (2013) Characteristics of stabilized spinel cathode powders obtained by in-situ coating method. J Power Sources 244:625–630

    CAS  Google Scholar 

  223. Thackeray MM, Johnson CS, Kim JS (2003) ZrO2- and Li2ZrO3-stabilized spinel and layered electrodes for lithium batteries. Electrochem Commun 5:752–758

    CAS  Google Scholar 

  224. Lin YM, Wu HC, Yen YC, Guo ZZ, Yang MH, Chen HM, Sheu HS, Wu NL (2005) Enhanced high-rate cycling stability of LiMn2O4 cathode by ZrO2 coating for Li-ion battery. J Electrochem Soc 152:A1526–A1532

    CAS  Google Scholar 

  225. Kim JS, Johnson CS, Vaughey JT, Hackney SA, Walz KA, Zeltner WA, Anderson MA, Thackeray MM (2004) The electrochemical stability of spinel electrodes coated with ZrO2, Al2O3, and SiO2 from colloidal suspensions. J Electrochem Soc 151:A1755–A1761

    CAS  Google Scholar 

  226. Walz KA, Johnson CS, Genthe J, Stoiber LC, Zeltner WA, Anderson MA, Thackeray MM (2010) Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings. J Power Sources 195:4943–4951

    CAS  Google Scholar 

  227. Sahan H, Göktepe H, Patat S, Ülgen A (2011) Improvement of the electrochemical performance of LiMn2O4 cathode active material by lithium borosilicate (LBS) surface coating for lithium-ion batteries. J Alloys Compd 509:4235–4241

    CAS  Google Scholar 

  228. Ha HW, Yun NJ, Kim K (2007) Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries. Electrochim Acta 52:3236–3241

    CAS  Google Scholar 

  229. Cho J (2008) VO x -coated LiMn2O4 nanorod clusters for lithium battery cathode materials. J Mater Chem 18:2257–2261

    CAS  Google Scholar 

  230. Lee SW, Kim KS, Moon HS, Lee JP, Kim HJ, Cho BW, Cho WI, Park JW (2004) Electrochemical and structural characteristics of metal oxide-coated lithium manganese oxide (spinel type): part I. In the range of 2.5–4.2 V. J Power Sources 130:227–232

    CAS  Google Scholar 

  231. Lee SW, Kim KS, Lee KL, Moon HS, Kim HJ, Cho BW, Cho WI, Park JW (2004) Electrochemical characteristics of metal oxide-coated lithium manganese oxide (spinel type): Part II. In the range of 3.0–4.4 V. J Power Sources 130:233–240

    CAS  Google Scholar 

  232. Dominko R, Gaberscek M, Drofenik J, Bele M, Pejovnik S (2001) A novel coating technology for preparation of cathodes in Li-ion batteries. Electrochem Solid-State Lett 4:A187–A190

    CAS  Google Scholar 

  233. Lim MR, Cho WI, Kim KB (2001) Preparation and characterization of gold-codeposited LiMn2O4 electrodes. J Power Sources 92:168–176

    CAS  Google Scholar 

  234. Son JT, Park KS, Kim HG (2004) Surface-modification of LiMn2O4 with a silver-metal coating. J Power Sources 126:182–185

    CAS  Google Scholar 

  235. Son JT, Kim HG, Park YJ (2004) New preparation method and electrochemical property of LiMn2O4 electrode. Electrochim Acta 50:453–459

    CAS  Google Scholar 

  236. Tu J, Zhao XB, Cao GS, Tu JP, Zhu TJ (2006) Improved performance of LiMn2O4 electrode materials for lithium ion battery by gold coating. Mater Lett 60:3251–3254

    CAS  Google Scholar 

  237. Eftekhari A (2004) LiMn2O4 electrode prepared by gold–titanium codeposition with improved cyclability. J Power Sources 130:260–265

    CAS  Google Scholar 

  238. Zhou WJ, He BL, Li HL (2008) Synthesis, structure and electrochemical of Ag-modified LiMn2O4 cathode materials for lithium-ion batteries. Mater Res Bull 43:2285–2294

    CAS  Google Scholar 

  239. Park SC, Kim YM, Kang YM, Kim KT, Lee PS, Lee JY (2001) Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2. J Power Sources 103:86–92

    CAS  Google Scholar 

  240. Park SC, Han YS, Kang YS, Lee PS, Ahn S, Lee HM, Lee JY (2001) Electrochemical properties of LiCoO2-coated LiMn2O4 prepared by solution-based chemical process. J Electrochem Soc 148:A680–A686

    CAS  Google Scholar 

  241. Cho J, Kim GB, Lim HS, Kim CS, Yoo SI (1999) Improvement of structural stability of LiMn2O4 cathode material on 55°C cycling by sol–gel of LiCoO2. Electrochem Solid-State Lett 2:607–609

    CAS  Google Scholar 

  242. Wang HE, Qian D, Lu ZG, Li YK (2012) Synthesis and electrochemical properties of LiMn2O4 and LiCoO2-coated LiMn2O4 cathode materials. J Alloys Compd 517:186–191

    CAS  Google Scholar 

  243. Liu Z, Wang H, Fang L, Lee JY, Gan LM (2002) Improving the high-temperature performance of LiMn2O4 spinel by micro-emulsion coating of LiCoO2. J Power Sources 104:101–107

    CAS  Google Scholar 

  244. Hwang BJ, Santhanam R, Huang CP, Tsai YW, Lee JF (2002) LiMn2O4 core surrounded by LiCo x Mn2−x O4 shell material for rechargeable lithium batteries: synthesis and characterization. J Electrochem Soc 149:A694–A698

    CAS  Google Scholar 

  245. Park SC, Kim YM, Han SC, Ahn S, Ku CH, Lee JY (2002) The elevated temperature performance of LiMn2O4 coated with LiNi1−x Co x O2 (x=0.2 and 1). J Power Sources 107:42–47

    CAS  Google Scholar 

  246. Yuan YF, Wu HM, Guo SY, Wu JB, Yang JL, Wang XL, Tu JP (2008) Preparation, characteristics and electrochemical properties of surface-modified LiMn2O4 by doped LiNi0.05Mn1.95O4. Appl Surf Sci 255:2225–2229

    CAS  Google Scholar 

  247. Chan HW, Duh JG, Sheu HS (2006) In situ synchrotron X-ray diffraction investigations of LiCu x Mn2−x O4 surface coated LiMn2O4 spinel cathode material during charge with various rates. J Electrochem Soc 153:A1533–A1538

    CAS  Google Scholar 

  248. Chan HW, Duh JG, Sheen SR, Tsai SY, Lee CR (2005) New surface modified material for LiMn2O4 cathode material in Li-ion battery. Surf Coat Technol 200:1330–1334

    CAS  Google Scholar 

  249. Liu DQ, Liu XQ, He ZZ (2007) The elevated temperature performance of LiMn2O4 coated with Li4Ti5O12 for lithium ion battery. Mater Chem Phys 105:362–366

    CAS  Google Scholar 

  250. Liu DQ, Yu J, Sun YH, He ZZ, Liu XQ (2007) Preparation and rate property of Li4Ti5O12-coated LiMn2O4 for lithium ion battery. Chin J Inorg Chem 23:41–45

    Google Scholar 

  251. Han AR, Kim TW, Park DH, Hwang SJ, Choy JH (2007) Soft chemical dehydration route to carbon coating of metal oxides: its application for spinel lithium manganate. J Phys Chem C 111:11347–11352

    CAS  Google Scholar 

  252. Moon HS, Lee SW, Lee YK, Park JW (2003) Characterization of protective-layer-coated LiMn2O4 cathode thin films. J Power Sources 119–121:713–716

    Google Scholar 

  253. Patey TJ, Büchel R, No SH, Krumeich F, Pratsinis SE, Novák P (2009) Flame co-synthesis of LiMn2O4 and carbon nanocomposites for high power batteries. J Power Sources 189:149–154

    CAS  Google Scholar 

  254. Vidu R, Stroeve P (2004) Improvement of the thermal stability of Li-ion batteries by polymer coating of LiMn2O4. Ind Eng Chem Res 43:3314–3324

    CAS  Google Scholar 

  255. Nishizawa M, Mukai K, Kuwabata S, Martin CR, Yoneyama HT (1997) Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubes and their properties as cathode active materials for lithium batteries. J Electrochem Soc 144:1923–1927

    CAS  Google Scholar 

  256. Arbizzani C, Mastragostino M, Rossi M (2002) Preparation and electrochemical characterization of a polymer Li1.03Mn1.97O4/pEDOT composite electrode. Electrochem Commun 4:545–549

    CAS  Google Scholar 

  257. Arbizzani C, Balducci A, Mastragostino M, Rossi M, Soavi F (2003) Characterization and electrochemical performance of Li-rich manganese oxide spinel/poly(3,4-ethylenedioxythiophene) as the positive electrode for lithium-ion batteries. J Electroanal Chem 553:125–133

    CAS  Google Scholar 

  258. Gemeay AH, Nishiyama H, Kuwabata S, Yoneyama H (1995) Chemical preparation of manganese dioxide/polypyrrole composites and their use as cathode active materials for rechargeable lithium batteries. J Electrochem Soc 142:4190–4195

    CAS  Google Scholar 

  259. Kuwabata S, Masui S, Yoneyama H (1999) Charge–discharge properties of composites of LiMn2O4 and polypyrrole as positive electrode materials for 4 V class of rechargeable Li batteries. Electrochim Acta 44:4593–4600

    CAS  Google Scholar 

  260. Novak P, Müller K, Santhanam KSV, Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97:207–281

    CAS  Google Scholar 

  261. Hu G, Wang X, Chen F, Zhou J, Li R, Deng Z (2005) Study of the electrochemical performance of spinel LiMn2O4 at high temperature based on the polymer modified electrode. Electrochem Commun 7:383–388

    CAS  Google Scholar 

  262. Fonceca CP, Neves S (2009) The usefulness of a LiMn2O4 composite as an active cathode material in lithium batteries. J Power Sources 135:249–254

    Google Scholar 

  263. Li JG, He XM, Zhao RS (2007) Electrochemical performance of SrF2-coated LiMn2O4 cathode material for Li-ion batteries. Trans Nonferrous Metals Soc China 17:1324–1327

    CAS  Google Scholar 

  264. Lee KS, Myung ST, Amine K, Yashiro H, Sun YK (2009) Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. J Mater Chem 19:1995–2005

    CAS  Google Scholar 

  265. Chen Q, Wang Y, Zhang T, Yin W, Yang J, Wang X (2012) Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries. Electrochim Acta 83:65–72

    CAS  Google Scholar 

  266. Lee DJ, Lee KS, Myung ST, Yashiro H, Sun YK (2011) Improvement of electrochemical properties of Li1.1Al0.05Mn1.85O4 achieved by an AlF3 coating. J Power Sources 196:1353–1357

    CAS  Google Scholar 

  267. Eddrief M, Dzwonkowski P, Julien CM, Balkanski M (1991) The ac conductivity in B2O3-Li2O films. Solid State Ionics 45:77–82

    CAS  Google Scholar 

  268. Soppe W, Aldenkam F, den Hartog HW (1987) The structure and conductivity of binary glasses (B2O3)1−xy (Li2O) x (Li2Cl2) y . J Non-Cryst Solids 91:351–374

    CAS  Google Scholar 

  269. Chan HW, Duh JG, Sheen SR (2004) Electrochemical performance of LBO-coated spinel lithium manganese oxide as cathode material for Li-ion battery. Surf Coat Technol 188–189:116–119

    Google Scholar 

  270. Sahan H, Göktepe H, Patat S, Ülgen A (2008) The effect of LBO coating method on electrochemical performance of LiMn2O4 cathode material. Solid State Ionics 178:1837–1842

    CAS  Google Scholar 

  271. Han HW, Duh JG, Sheen SR (2006) Microstructure and electrochemical properties of LBO-coated Li-excess Li1+x Mn2O4 cathode material at elevated temperature for Li-ion battery. Electrochim Acta 51:3645–3651

    Google Scholar 

  272. Jiang QL, Du K, Cao YB, Peng ZD, Hu GR, Liu YX (2010) Synthesis and characterization of phosphate modified LiMn2O4 cathode materials for Li-ion battery. Chin Chem Lett 21:1382–1386

    CAS  Google Scholar 

  273. Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I, Mauger A, Julien CM (2011) Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sources 196:3949–3954

    CAS  Google Scholar 

  274. Zaghib K, Dontigny M, Guerfi A, Trottier J, Hamel-Paquet J, Gariepy V, Galoutov K, Hovington P, Mauger A, Groult H, Julien CM (2012) An improved high-power battery with increased thermal operating range: C-LiFePO4//C-Li4Ti5O12. J Power Sources 216:192–200

    CAS  Google Scholar 

  275. Sadeghi B, Sarraf-Mamoory R, Shahverdi HR (2012) Surface modification of LiMn2O4 for lithium batteries by nanostructured LiFePO4 phosphate. J Nanomater 2012:743236

    Google Scholar 

  276. Qing C, Bai Y, Yang J, Zhang W (2011) Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating. Electrochem Acta 56:6612–6618

    CAS  Google Scholar 

  277. Li X, Xu Y (2008) Enhanced cycling performance of spinel LiMn2O4 coated with ZnMn2O4 shell. J Solid State Electrochem 12:851–855

    CAS  Google Scholar 

  278. Liu J, Manthiram A (2009) Kinetics study of the 5 V spinel cathode LiMn1.5Ni0.5O4 before and after surface modifications. J Electrochem Soc 156:A833–A838

    CAS  Google Scholar 

  279. Liu J, Manthiram A (2009) Improved electrochemical performance of the 5 V spinel cathode LiMn1.5Ni0.42Zn0.08O4 by surface modification. J Electrochem Soc 156:A66–A72

    CAS  Google Scholar 

  280. Liu J, Manthiram A (2009) Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem Mater 21:1695–1707

    CAS  Google Scholar 

  281. Noguchi T, Yamazaki I, Numataa T, Shirakata M (2007) Effect of Bi oxide surface treatment on 5 V spinel LiNi0.5Mn1.5O4. J Power Sources 174:359–365

    CAS  Google Scholar 

  282. Alcántara R, Jaraba M, Lavela P, Tirado JL (2004) X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes. J Electroanal Chem 566:187–192

    Google Scholar 

  283. Yoon YK, Oh IH (2003) Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials as elevated temperatures. Electrochim Acta 48(2003):503–506

    Google Scholar 

  284. Sun YK, Lee YS, Yoshio M, Amine K (2002) Synthesis and electrochemical properties of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode material for lithium secondary batteries. Electrochem Solid-State Lett 5:A99–A102

    CAS  Google Scholar 

  285. Sun YK, Lee YS, Yoshio M, Amine K (2003) Synthesis and electrochemical properties of ZnO-coated LiMn1.5Ni0.5O4 spinel as 5 V cathode material for lithium secondary batteries. J Electrochem Soc 150:L11

    CAS  Google Scholar 

  286. Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2006) Surface modifications of electrode materials for lithium ion batteries. Solid State Sci 8:113–128

    CAS  Google Scholar 

  287. Alcántara R, Jaraba M, Lavela P, Tirado JL, Jumas JC, Olivier Fourcade J (2004) 57Fe Mössbauer spectroscopy and surface modification with zinc and magnesium of LiCo0.8Fe0.2MnO4 5 V electrodes. J Power Sources 135:281–285

    Google Scholar 

  288. Shi JY, Yi C-W, Kim K (2010) Improved electrochemical performance of AlPO4-coated LiMn1.5Ni0.5O4 electrode for lithium-ion batteries. J Power Sources 195:6860–6866

    CAS  Google Scholar 

  289. Kobayashi Y, Miyashiro H, Takei K, Shigemura H, Tabuchi M, Kageyama H, Iwahori T (2003) 5 V class all-solid-state composite lithium battery with Li3PO4 coated LiNi0.5Mn1.5O4. J Electrochem Soc 150:A1577–A1582

    CAS  Google Scholar 

  290. Liu D, Bai Y, Zhao S, Zhang W (2012) Improved cycling performance of 5 V spinel LiMn1.5Ni0.5O4 by amorphous FePO4 coating. J Power Sources 219:333–338

    CAS  Google Scholar 

  291. Liu D, Trottier J, Charette P, Fréchette J, Guerfi A, Mauger A, Julien CM, Zaghib K (2012) Effect of nano LiFePO4 coating on LiMn1.5Ni0.5O4 5 V cathode for lithium ion batteries. J Power Sources 204:127–132

    CAS  Google Scholar 

  292. Chong J, Xun S, Song X, Liu G, Battaglia V (2013) Surface stabilized LiNi0.5Mn1.5O4 cathode materials with high-rate capability and long life for lithium-ion batteries. Nano Energy 2:283–293

    CAS  Google Scholar 

  293. Kim Y, Chi M, Liang, C Dudney NJ (2011) Cycling stability of 5 V LiMn1.5Ni0.5O4 spinel particles coated with a thin film mixed conductor. ECS Meeting Abstracts MA2001-02:639

  294. Kim Y, Dudney NJ, Chi M, Martha SK, Nanda J, Veith GM, Liang C (2013) A perspective on coatings to stabilize high-voltage cathodes: LiMn1.5Ni0.5O4 with sub-nanometer Lipon cycled with LiPF6 electrolyte. J Electrochem Soc 160:A3113–A3125

    CAS  Google Scholar 

  295. Wu HM, Belharouak I, Abouimrane A, Sun YK, Amine K (2010) Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. J Power Sources 195:2909–2913

    CAS  Google Scholar 

  296. Fan Y, Wang J, Tang Z, He W, Zhang J (2007) Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries. Electrochim Acta 52:3870–3875

    CAS  Google Scholar 

  297. Fu YB, Ma XH, Yang QH, Zong XF (2003) The effect of fumed silica on the interfacial stability in the polymer gel electrolyte. Mater Lett 57:1759–1764

    CAS  Google Scholar 

  298. Zhou J, Fedkiw PS (2002) Interfacial stability between lithium and fumed silica-based composite electrolytes. J Electrochem Soc 149:A1121–A1126

    CAS  Google Scholar 

  299. Zhou J, Fedkiw PS (2003) Cycling of lithium/metal oxide cells using composite electrolytes containing fumed silicas. Electrochim Acta 48:2571–2582

    CAS  Google Scholar 

  300. Arrebola J, Caballero A, Hernan L, Morales J, Castellone ER, Ramos-Barrado JR (2007) Effects of coating with gold on the performance of nanosized LiNi0.5Mn1.5O4 for lithium batteries. J Electrochem Soc 154:A178–A184

    CAS  Google Scholar 

  301. Arrebola J, Caballero A, Hernan L, Morales J, Castellone ER (2005) Adverse effect of Ag treatment on the electrochemical performance of the 5 V nanometric spinel LiNi0.5Mn1.5O4 in lithium cells. Electrochem Solid-State Lett 8:A303–A307

    CAS  Google Scholar 

  302. Luo Q, Manthiram A (2009) Effect of low temperature fluorine doping on the properties of spinel LiMn2−2y Li y M y O4−h F h (M = Fe, Co, and Zn) cathodes. J Electrochem Soc 156:A84–A88

    CAS  Google Scholar 

  303. Huang YY, Zeng XL, Zhou C, Wu P, Tong DG (2013) Electrochemical performance and thermal stability of GaF3-coated LiNi0.5Mn1.5O4 as 5 V cathode materials for lithium ion batteries. J Mater Sci 48:625–635

    CAS  Google Scholar 

  304. Huggins RA (2013) Do you really want an unsafe battery? J Electrochem Soc 160:A3001–A3005

    CAS  Google Scholar 

  305. Chang HH, Chang CC, Su CY, Wu HC, Yang MH, Wu NL (2008) Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. J Power Sources 185:466–472

    CAS  Google Scholar 

  306. Liu H, Wang GX, Wexler D, Wang JZ, Liu HK (2008) Ermance of LiFePO4 cathode material coated with ZrO2 nanolayer. Electrochem Commun 10:165–169

    Google Scholar 

  307. Yao J, Wu F, Qiu X, Li N, Su Y (2011) Effect of CeO2-coating on the electrochemical performances of LiFePO4/C cathode material. Electrochim Acta 56:5587–5592

    CAS  Google Scholar 

  308. Cui Y, Zhao X, Guo R (2010) Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating. J Alloys Compd 490:236–240

    CAS  Google Scholar 

  309. Lee J, Kumar P, Lee J, Moudgil BM, Singh RK (2013) ZnO incorporated LiFePO4 for high rate electrochemical performance in lithium ion rechargeable batteries. J Alloys Compd 550:536–544

    CAS  Google Scholar 

  310. Croce F, Epifanio AD, Hassoun J, Olczac ADT, Scrosati B (2002) A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem Solid-State Lett 5:A47–A50

    CAS  Google Scholar 

  311. Song GM, Wu Y, Xu Q, Liu G (2010) Enhanced electrochemical properties of LiFePO4 cathode for Li-ion batteries with amorphous NiP coating. J Power Sources 195:3913–3917

    CAS  Google Scholar 

  312. Ait-Salah A, Mauger A, Julien CM, Gendron F (2006) Nano-sized impurity phases in relation to the mode of preparation of LiFePO4. Mater Sci Eng B 129:232–244

    Google Scholar 

  313. Julien CM, Ait-Salah A, Mauger A, Gendron F (2006) Magnetic properties of lithium intercalation compounds. In: Stoynov Z, Vladikova D (eds) Portable and emergency energy sources. Martin Drinov Publ House, Sofia, pp 71–101

    Google Scholar 

  314. Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2009) Positive electrode: lithium iron phosphate. In: Garche J (ed) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam, pp 264–296

    Google Scholar 

  315. Zaghib K, Mauger A, Goodenough JB, Julien CM (2011) Design and properties of LiFePO4 nano-materials for high power applications. In: Abu-Lebdeh Y, Davidson I (eds) Nanotechnology for Li-ion batteries. Springer, Berlin, pp 179–220

    Google Scholar 

  316. Zhang X, Guo H, Li X, Wang Z, Wu L (2012) Studies of fast-ion conducting Li3V2(PO4)3 coated LiFePO4 via sol–gel method. Solid State Ionics 212:106–111

    Google Scholar 

  317. Zhang Q, Jiang W, Zhou Z, Wang S, Guo X, Zhao S, Ma G (2012) Enhanced electrochemical performance of Li4SiO4-coated LiFePO4 prepared by sol–gel method and microwave heating. Solid State Ionics 218:31–34

    CAS  Google Scholar 

  318. Armand M, Gauthier M, Magnan JF, Ravet N (2002) Method for synthesis of carbon-coated redox materials with controlled size. Patent PCTWO02/27823 and WO 01/27824

  319. Lin Y, Gao MX, Zhu D, Liu YF, Pan HG (2008) Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C. J Power Sources 184:444–448

    CAS  Google Scholar 

  320. Zaghib K, Charest P, Dontigny M, Guerfi A, Lagacé M, Mauger A, Kopek M, Julien CM (2010) LiFePO4: from molten ingot to nanoparticles with high-rate performance in Li-ion batteries. J Power Sources 195:8280–8288

    CAS  Google Scholar 

  321. Ravet N, Gauthier M, Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2007) Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chem Mater 19:2595–2602

    CAS  Google Scholar 

  322. Kostecki R, Schnyder B, Alliata D, Song X, Kinoshita K, Kotz R (2001) Surface studies of carbon films from pyrolyzed photoresist. Thin Solid Films 396:36–43

    CAS  Google Scholar 

  323. Julien CM, Zaghib K, Mauger A, Groult H (2012) Enhanced electrochemical properties of LiFePO4 as positive electrode of Li-ion batteries for HEV application. Adv Chem Eng Sci 2:321–329

    CAS  Google Scholar 

  324. Ait-Salah A, Mauger A, Zaghib K, Goodenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) Reduction Fe3+ of impurities in LiFePO4 from pyrolysis of organic precursor used for carbon deposition. J Electrochem Soc 153:A1692–A1701

    CAS  Google Scholar 

  325. Julien CM, Zaghib K, Mauger A, Massot M, Ait-Salah A, Selmane M, Gendron F (2006) Characterization of the carbon coating onto LiFePO4 particles used in lithium batteries. J Appl Phys 100:63511

    Google Scholar 

  326. Zhang P, Zhang D, Huang L, Wei Q, Lin M, Ren XZ (2012) First-principles study on the electronic structure of a LiFePO4 (010) surface adsorbed with carbon. J Alloys Compd 540:121–126

    CAS  Google Scholar 

  327. Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) Improved iron based cathode material. ECS Meet Abstr 99–2:127

    Google Scholar 

  328. Armand M, Gauthier M, Magnan JF, Ravet N (2002) Method for synthesis of carbon-coated redox materials with controlled size. WO Patent 02/27823

  329. Ravet N, Besner S, Simoneau M, Vallée A, Armand M, Magnan JF (2005) Electrode materials with high surface conductivity. US Patents 6/962/666 and 6/855/273

  330. Nien YH, Carey JR, Chen JS (2009) Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors. J Power Sources 193:822–827

    CAS  Google Scholar 

  331. Wang YG, Wang YR, Hosono EJ, Wang KX, Zhou HS (2008) The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 47:7461–7465

    CAS  Google Scholar 

  332. Chang ZR, Lu HJ, Tang HW, Li HJ, Yuan XZ, Wang H (2009) Synthesis and characterization of high density LiFePO4/C composites as cathode materials for lithium-ion batteries. Electrochim Acta 54:4595–4599

    CAS  Google Scholar 

  333. Liu HP, Wang ZX, Li XH, Guo HJ, Peng WJ, Zhang YH, Hu QY (2008) Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method. J Power Sources 184:469–472

    CAS  Google Scholar 

  334. Wang L, Liang GC, Ou XQ, Zhi XK, Zhang JP, Cui JY (2009) Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction. J Power Sources 189:423–428

    CAS  Google Scholar 

  335. Zhi X, Liang GC, Wang L, Ou X, Gao L, Jie X (2007) Optimization of carbon coatings on LiFePO4: carbonization temperature and carbon content. J Alloys Compd 503:370–374

    Google Scholar 

  336. Wang S, Zhou C, Zhou Q, Ni G, Wu J (2011) Preparation of LiFePO4/C in a reductive atmosphere generated by windward aerobic decomposition of glucose. J Power Sources 196:5143–5146

    CAS  Google Scholar 

  337. Oh SW, Myung ST, Bang HJ, Yoon CS, Amine K, Sun YK (2009) Nanoporous structured LiFePO4 with spherical microscale particles having high volumetric capacity for lithium batteries. Electrochem Solid-State Lett 12:A181–A185

    CAS  Google Scholar 

  338. Oh SW, Myung ST, Oh SM, Yoon CS, Amine K, Sun YK (2010) Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries. Electrochim Acta 55:1193–1199

    CAS  Google Scholar 

  339. Kim K, Jeong JH, Kim IJ, Kim HS (2007) Carbon coatings with olive oil, soybean oil and butter on nano-LiFePO4. J Power Sources 167:524–528

    CAS  Google Scholar 

  340. Oh SW, Myung ST, Oh SM, Oh KH, Amine K, Scrosati B, Sun YK (2010) Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv Mater 22:4842–4845

    CAS  Google Scholar 

  341. Wang Y, Liu Z, Zhou S (2011) An effective method for preparing uniform carbon coated nano-sized LiFePO4 particles. Electrochim Acta 58:359–363

    CAS  Google Scholar 

  342. Yan X, Yang G, Liu J, Ge Y, Xie H, Pan X, Wang R (2009) An effective and simple way to synthesize LiFePO4/C composite. Electrochim Acta 54(2009):5770–5774

    CAS  Google Scholar 

  343. Zhang D, Yu X, Wang Y, Cai R, Shao Z, Liao X, Ma ZF (2009) Ball milling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor. J Electrochem Soc 156:A802–A808

    CAS  Google Scholar 

  344. Fey GTK, Lu TL, Wu FY, Li WH (2008) Carboxylic acid-assisted solid-state synthesis of LiFePO4/C composites and their electrochemical properties as cathode materials for lithium-ion batteries. J Solid State Electrochem 12:825–833

    Google Scholar 

  345. Fey GTK, Lu TL (2008) Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid route. J Power Sources 178:807–814

    CAS  Google Scholar 

  346. Doherty CM, Caruso RA, Smarsly BM, Adelhelm P, Drummond CJ (2009) Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chem Mater 21:5300–5306

    CAS  Google Scholar 

  347. Yang MR, Ke WH, Wu SH (2005) Preparation of LiFePO4 powders by co-precipitation. J Power Sources 146:539–543

    CAS  Google Scholar 

  348. Kim JK, Choi JW, Chauhan GS, Ahn JH, Hwang GC, Choi JB, Ahn HJ (2008) Enhancement of electrochemical performance of lithium iron phosphate by controlled sol–gel synthesis. Electrochim Acta 53:8258–8264

    CAS  Google Scholar 

  349. Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid-State Lett 6:A207–A209

    CAS  Google Scholar 

  350. Yan Z, Cai S, Miao L, Zhou X, Zhao Y (2012) Synthesis and characterization of in situ carbon-coated Li2FeSiO4 cathode materials for lithium ion battery. J Alloys Compd 511:101–106

    CAS  Google Scholar 

  351. Chen Z, Zhu H, Ji S, Fakir R, Linkov V (2008) Influence of carbon sources on electrochemical performances of LiFePO4/C composites. Solid State Ionics 179:1810–1815

    CAS  Google Scholar 

  352. Jin Y, Yang CP, Rui XH, Cheng T, Chen CH (2011) V2O3 modified LiFePO4/C composite with improved electrochemical performance. J Power Sources 196:5623–5630

    CAS  Google Scholar 

  353. Ong CW, Lin YK, Chen JS (2007) Effect of various organic precursors on the performance of LiFePO4/C composite cathode by coprecipitation method. J Electrochem Soc 154:A527–A533

    CAS  Google Scholar 

  354. Zhou Y, Gu CD, Zhou JP, Cheng LJ, Liu WL, Qiao YQ, Wang XL, Tu JP (2011) Effect of carbon coating on low temperature electrochemical performance of LiFePO4/C by using polystyrene sphere as carbon source. Electrochim Acta 56:5054–5059

    CAS  Google Scholar 

  355. Trudeau ML, Laul D, Veillette R, Serventi AM, Zaghib K, Mauger A, Julien CM (2011) In situ high-resolution transmission electron microscopy synthesis observation of nanostructured carbon coated LiFePO4. J Power Sources 196:7383–7394

    CAS  Google Scholar 

  356. Chen ZY, Zhu HL, Zhu W, Zhang JL, Li QF (2010) Electrochemical performance of carbon nanotube-modified LiFePO4 cathodes for Li-ion batteries. Trans Nonferrous Metals Soc China 20:614–618

    CAS  Google Scholar 

  357. Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopek M, Mauger A, Gendron F, Julien CM (2008) Aging of LiFePO4 upon exposure to H2O. J Power Sources 185:698–710

    CAS  Google Scholar 

  358. Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185

    CAS  Google Scholar 

  359. Jiang Z, Jiang ZJ (2012) Effects of carbon content on the electrochemical performance of LiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an iron source. J Alloys Compd 537:308–317

    CAS  Google Scholar 

  360. Cho YD, Fey GTK, Kao HM (2009) The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. J Power Sources 189:256–262

    CAS  Google Scholar 

  361. Wang GX, Yang L, Chen Y, Bewlay S, Liu HK (2005) An investigation of polypyrrole–LiFePO4 composite cathode materials for lithium-ion batteries. Electrochim Acta 50:4649–4654

    CAS  Google Scholar 

  362. Park KS, Schougaard SB, Goodenough JB (2007) Conducting-polymer/iron-redox couple composite cathodes for lithium secondary batteries. Adv Mater 19:848–851

    CAS  Google Scholar 

  363. Huang YH, Park KS, Goodenough JB (2006) Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrole. J Electrochem Soc 153:A2282–A2286

    CAS  Google Scholar 

  364. Huang YH, Goodenough JB (2008) High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem Mater 20:7237–7241

    CAS  Google Scholar 

  365. Ferdokova A, Orinakova R, Orinak A, Wiemhöfer HD, Kaniansky D, Winter M (2010) Surface treatment of LiFePO4 cathode material with PPy/PEG conductive layer. J Solid State Electrochem 14:2173–2178

    Google Scholar 

  366. Sisbandini C, Brandell D, Gustafsson T, Nyholm L (2009) The mechanism of capacity enhancement in LiFePO4 cathodes through polyetheramine coating. J Electrochem Soc 156:A720–A725

    CAS  Google Scholar 

  367. Bai YM, Qiu P, Wen ZL, Han SC (2010) Improvement of electrochemical performances of LiFePO4 cathode materials by coating of polythiophene. J Alloys Compd 508:1–4

    CAS  Google Scholar 

  368. Murugan AV, Muraliganth T, Manthiram A (2008) Rapid microwave–solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries. Electrochem Commun 10:903–906

    Google Scholar 

  369. Li G, Pickup PG (2000) Ion transport in poly(3,4-ethylenedioxythiophene)poly(styrene-4-sulfonate) composites. Phys Chem Chem Phys 2:1255–1260

    CAS  Google Scholar 

  370. Zaghib K, Guerfi A, Hovington P, Vijh A, Trudeau M, Mauger A, Goodenough JB, Julien CM (2013) Review and analysis of nanostructured olivine-based lithium recheargeable batteries: status and trends. J Power Sources 232:357–369

    CAS  Google Scholar 

  371. Choi D, Wang D, Bae IT, Xiao J, Nie Z, Wang W, Viswanathan VV, Lee YJ, Zhang JG, Graff GL, Yang Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett 10:2799–2805

    CAS  Google Scholar 

  372. Wang D, Buqa H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon NH, Miners JH, Poletto L, Grätzel M (2009) High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J Power Sources 189:624–628

    CAS  Google Scholar 

  373. Martha SK, Markovski B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552

    CAS  Google Scholar 

  374. Oh SM, Oh SW, Yoon CS, Scrosati B, Amine K, Sun YK (2010) High-performance carbon–LiMnPO4 nanocomposite cathode for lithium batteries. Adv Funct Mater 20:3260–3265

    CAS  Google Scholar 

  375. Choi YS, Kim S, Choi SS, Han JS, Kim JD, Jeon SE, Jung BH (2004) Effect of cathode component on the energy density of lithium–sulfur battery. Electrochim Acta 50:833–835

    CAS  Google Scholar 

  376. Kuroda S, Tobori N, Sakuraba M, Sato Y (2003) Charge-discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries. J Power Sources 119–121:924–928

    Google Scholar 

  377. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM (2006) Superior electric double layer capacitors using ordered mesoposrous carbons. Carbon 44:216–224

    CAS  Google Scholar 

  378. Zhang Q, Peng G, Wang G, Qu M, Yu ZL (2009) Effect of mesoporous carbon containing binary conductive additives in lithium ion batteries on the electrochemical performance of the LiCoO2 composite cathodes. Solid State Ionics 180:698–702

    CAS  Google Scholar 

  379. Bakenov Z, Taniguchi I (2010) LiMg x Mn1−x PO4/C cathodes for lithium batteries prepared by a combination of spray pyrolysis with wet ballmilling. J Electrochem Soc 157:A430–A436

    CAS  Google Scholar 

  380. Bakenov Z, Taniguchi I (2005) Electrochemical performance of nanostructured LiM x Mn2−x O4 (M = Co and Al) powders at high charge–discharge operations. Solid State Ionics 176:1027–1034

    CAS  Google Scholar 

  381. Bakenov Z, Taniguchi I (2010) Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons. J Power Sources 195:7445–7451

    CAS  Google Scholar 

  382. Oh SM, Jung HG, Yoon CS, Myung ST, Chen Z, Amine K, Sun YK (2011) Enhanced electrochemical performance of carbon–LiMn1−x Fe x PO4 nanocomposite cathode for lithium-ion batteries. J Power Sources 196:6924–6928

    CAS  Google Scholar 

  383. Liang GC, Wang L, Qu X, Zhao X, Xu SZ (2008) Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution. J Power Sources 184:538–542

    CAS  Google Scholar 

  384. Murugan AV, Muraliganth T, Manthiram A (2009) One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M = Mn, Fe and Co) cathodes. J Electrochem Soc 156:A79–A83

    Google Scholar 

  385. Liu J, Liu X, Huang T, Yu A (2013) Synthesis of nano-sized LiMnPO4 and in situ carbon coating using a solvothermal method. J Power Sources 229:203–209

    CAS  Google Scholar 

  386. Zaghib K, Trudeau M, Guerfi A, Trottier J, Mauger A, Veillette R, Julien CM (2012) New advanced cathode material: LiMnPO4 encapsulated with LiFePO4. J Power Sources 204:177–181

    CAS  Google Scholar 

  387. Yang J, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) prepared via a nanoaqueous sol–gel route. J Electrochem Soc 153:A716–A723

    CAS  Google Scholar 

  388. Ni J, Gao L, Lu L (2013) Carbon coated lithium cobalt phosphate for Li-ion batteries: comparison of three coating techniques. J Power Sources 221:35–41

    CAS  Google Scholar 

  389. Wang F, Yang J, Li YN, Wang J (2011) Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery. J Power Sources 196:4806–4810

    CAS  Google Scholar 

  390. Devaraju MK, Rangappa D, Honma I (2012) Controlled synthesis of plate-like LiCoPO4 nanoparticles via supercritical method and their electrode property. Electrochim Acta 85:548–553

    CAS  Google Scholar 

  391. Jang IC, Lim HH, Lee SB, Karthikeyan K, Aravindan V, Kang KS, Yoon WS, Cho WI, Lee YS (2010) Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery performance. J Alloys Compd 497:321–324

    CAS  Google Scholar 

  392. Kuribayashi I, Yokayama M, Yamashita M (1995) Battery characteristics with various carbonaceous materials. J Power Sources 54:1–5

    CAS  Google Scholar 

  393. Lee HY, Baek JK, Jang SW, Lee SM, Hong ST, Lee KY, Kim MH (2001) Characteristics of carbon-coated graphite prepared from mixture of graphite and polyvinylchloride as anode materials for lithium ion batteries. J Power Sources 101:206–212

    CAS  Google Scholar 

  394. Qiu W, Zhang G, Lu S, Liu Q (1999) Correlation between the structure and electrochemical properties of carbon materials. Solid State Ionics 121:73–77

    CAS  Google Scholar 

  395. Yoshio M, Wang H, Fukuda K, Hara Y, Adachi Y (2000) Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J Electrochem Soc 147:1245–1250

    CAS  Google Scholar 

  396. Zhang HL, Liu SH, Li F, Bai S, Liu C, Tan J, Cheng HM (2006) Electrochemical performance of pyrolytic carbon-coated natural graphite spheres. Carbon 44:2212–2218

    CAS  Google Scholar 

  397. Zhang SS, Xu K, Zow TR (2003) Effect of Li2CO3-coating on the performance of natural graphite in Li-ion battery. Electrochem Commun 5:979–982

    CAS  Google Scholar 

  398. Pan Q, Guo K, Wang L, Fang S (2002) Novel modified graphite as anode material for lithium-ion batteries. J Electrochem Soc 149:A1218–A1223

    CAS  Google Scholar 

  399. Park YS, Bang HJ, Oh SM, Sun YK, Lee SM (2009) Effect of carbon coating on thermal stability of natural graphite spheres used as anode materials in lithium-ion batteries. J Power Sources 190:553–557

    CAS  Google Scholar 

  400. Nozaki H, Nagaoka K, Hoshi K, Ohta N, Inagaki M (2009) Carbon-coated graphite for anode of lithium ion rechargeable batteries: carbon coating conditions and precursors. J Power Sources 194:486–493

    CAS  Google Scholar 

  401. Ohta N, Nagaoka K, Hoshi K, Bitoh S, Inagaki M (2005) Carbon-coated graphite for anode of lithium ion rechargeable batteries: graphite substrates for carbon coating. J Power Sources 194:985–990

    Google Scholar 

  402. Park G, Gunawardhana N, Nakamura H, Lee YS, Yoshio M (2011) Suppression of Li deposition on surface of graphite using carbon coating by thermal vapor deposition process. J Power Sources 196:9820–9824

    CAS  Google Scholar 

  403. Nobili F, Dsoke S, Mancini M, Tossici R, Marassi R (2008) Electrochemical investigation of polarization phenomena and intercalation kinetics of oxidized graphite electrodes coated with evaporated metal layers. J Power Sources 180:845–851

    CAS  Google Scholar 

  404. Mancini M, Nobili F, Dsoke S, D’Amico F, Tossici R, Croce F, Marassi R (2009) Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper. J Power Sources 190:141–148

    CAS  Google Scholar 

  405. Nobili F, Mancini M, Dsoke S, Tossici R, Marassi R (2010) Low temperature behavior of graphite–tin composite anodes for Li-ion batteries. J Power Sources 195:7090–7097

    CAS  Google Scholar 

  406. Nobili F, Mancini M, Stallworth PE, Croce F, Greenbaum SG, Marassi R (2012) Tin-coated graphite electrodes as composite anodes for Li-ion batteries. Effects of tin coatings thickness toward intercalation behaviour. J Power Sources 198:243–250

    CAS  Google Scholar 

  407. Gao J, Fu LJ, Zhang HP, Zhang T, Wu YP, Wu HQ (2006) Suppression of PC decomposition at the surface of graphitic carbon by Cu coating. Electrochem Commun 8:1726–1730

    CAS  Google Scholar 

  408. Gao J, Zhang HP, Zhang T, Wu YP, Holze R (2007) Preparation of Cu coating on graphite electrode foil and its suppressive effect on PC decomposition. Solid State Ionics 178:1225–1229

    CAS  Google Scholar 

  409. Gao J, Zhang HP, Fu LJ, Zhang T, Wu YP, Takamura T, Wu HQ, Holze R (2007) Reprint of “Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver”. Electrochim Acta 53:1380–1384

    CAS  Google Scholar 

  410. Gao J, Fu LJ, Zhang HP, Yang LC, Wu YP (2008) Improving electrochemical performance of graphitic carbon in PC-based electrolyte by nano-TiO2 coating. Electrochim Acta 53:2376–2379

    CAS  Google Scholar 

  411. Fu LJ, Gao J, Zhang T, Cao Q, Yang LC, Wu YP, Holze R (2007) Effect of Cu2O coating on graphite as anode material of lithium ion battery in PC-based electrolyte. J Power Sources 171:904–907

    CAS  Google Scholar 

  412. Zaghib K, Dontigny M, Perret P, Guerfi A, Ramanathan M, Prakash J, Mauger A, Julien CM (2014) Electrochemical and thermal characterization of lithium titanate spinel anode in C-LiFePO4//C-Li4Ti5O12 cells at sub-zero temperatures. J Power Sources 248:1050–1057

    CAS  Google Scholar 

  413. Yang LX, Gao L (2009) Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for Li-ion battery. J Alloys Compd 485:93–97

    CAS  Google Scholar 

  414. Hu XB, Lin ZJ, Yang KR, Deng ZH, Suo JS (2010) Influence factors on electrochemical properties of Li4Ti5O12/C anode material pyrolyzed from lithium polyacrylate. J Alloys Compd 506:160–166

    CAS  Google Scholar 

  415. Wang GJ, Gao J, Fu LJ, Zhao NH, Wu YP, Takamura T (2007) Preparation and characteristic of carbon-coated Li4Ti5O12 anode material. J Power Sources 174:1109–1112

    CAS  Google Scholar 

  416. Gao J, Ying JR, Jiang CY, Wan CR (2007) High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries. J Power Sources 166:255–259

    CAS  Google Scholar 

  417. Huang SH, Wen ZY, Zhu XJ, Gu ZH (2004) Preparation and electrochemical performance of Ag doped Li4Ti5O12. Electrochem Commun 6:1093–1097

    CAS  Google Scholar 

  418. Huang SH, Wen ZY, Zhu XJ, Lin B, Han JD, Xu XG (2008) The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries. J Alloys Compd 457:400–403

    CAS  Google Scholar 

  419. Xiang H, Tian B, Lian P, Li Z, Wang H (2011) Sol–gel synthesis and electrochemical performance of Li4Ti5O12/graphene composite anode for lithium-ion batteries. J Alloys Compd 509:7205–7209

    CAS  Google Scholar 

  420. Wang J, Liu XM, Yang H, Shen XD (2011) Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol–gel method. J Alloys Compd 509:712–718

    CAS  Google Scholar 

  421. Guo X, Wang C, Chen M, Wang J, Zheng J (2012) Carbon coating of Li4Ti5O12 using amphiphilic carbonaceous material for improvement of lithium-ion battery performance. J Power Sources 214:107–112

    CAS  Google Scholar 

  422. Jung HG, Kim J, Scrosati B, Sun YK (2011) Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries. J Power Sources 196:7763–7766

    CAS  Google Scholar 

  423. Zhang B, Huang ZD, Oh SW, Kim JK (2011) Improved rate capability of carbon coated Li3.9Sn0.1Ti5O12 porous electrodes for Li-ion batteries. J Power Sources 196:10692–10697

    CAS  Google Scholar 

  424. Ye YB, Ning F, Li B, Song QS, Lu W, Du H, Zhai D, Su F, Yang QH, Kan F (2012) Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. J Power Sources 202:253–261

    Google Scholar 

  425. Liu J, Li X, Cai M, Li R, Sun X (2013) Ultrathin atomic layer deposited ZrO2 coating to enhance the electrochemical performance of Li4Ti5O12 as an anode material. Electrochim Acta 93:195–201

    CAS  Google Scholar 

  426. Wang YQ, Guo L, Guo YG, Li H, He XQ, Tsukimoto S, Ikuhara Y, Wan LJ (2012) Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J Am Chem Soc 134:7874–7879

    CAS  Google Scholar 

  427. Chan CK, Ruffo R, Hong SS, Huggins RA, Cui Y (2009) Structural and electrochemical study of the reaction of lithium with silicon nanowires. J Power Sources 189:34–39

    CAS  Google Scholar 

  428. Memarzadeh EL, Kalisvaart WP, Kohandehghan A, Zahiri B, Holt CMB, Mitlin D (2012) Silicon nanowire core aluminum shell coaxial nanocomposites for lithium ion battery anodes grown with and without a TiN interlayer. J Mater Chem 22:6655–6668

    CAS  Google Scholar 

  429. Kohandehghan A, Kalisvaart P, Kupsta M, Zahiri B, Amirkhiz BS, Li Z, Memarzadeh EI, Bendersky LA, Mitlin D (2013) Magnesium and magnesium-silicide coated silicon nanowire composite anodes for lithium-ion batteries. J Mater Chem A 1:1600–1612

    CAS  Google Scholar 

  430. Spinolo G, Ardizzone S, Trasatti S (1997) Surface characterization of Co3O4 electrodes prepared by the sol–gel method. J Electroanal Chem 423:49–57

    CAS  Google Scholar 

  431. Kang YM, Lee SM, Sung MS, Jeong GJ, Kim JS, Kim SS (2006) The effect of Co–Co3O4 coating on the electrochemical properties of Si as an anode material for Li ion battery. Electrochim Acta 52:450–454

    CAS  Google Scholar 

  432. Li J, Xiao X, Cheng YT, Verbrugge M (2013) Atomic layered coating enabling ultrafast surface kinetics at silicon electrodes in lithium ion batteries. J Phys Chem Lett 4:3387–3391

    CAS  Google Scholar 

  433. Gu M, Li Y, Li X, Hu S, Zhang X, Xu W, Thevuthasan S, Baer DR, Zhang JG, Liu J, Wang C (2012) In situ TEM study of lithiation behaviour of silicon nanoparticles attached to an embedded in a carbon matrix. ACS Nano 6:8439–8447

    CAS  Google Scholar 

  434. Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163:1003–1039

    CAS  Google Scholar 

  435. Cho J (2010) Porous Si anode materials for lithium rechargeable batteries. J Mater Chem 20:4009–4014

    CAS  Google Scholar 

  436. Gohier A, Laïk B, Kim KH, Maurice JL, Pereira-Ramos JP, Cojocaru CS, Tran-Van P (2012) High-rate capacity silicon decorated vertically aligned carbon nanotubes for Li-ion batteries. Adv Mater 24:2592–2597

    CAS  Google Scholar 

  437. Du C, Chen M, Wang L, Yin G (2011) Covalently-functionalizing synthesis of Si@C core-shell nanocomposites as high capacity anode materials for lithium-ion batteries. J Mater Chem 21:15692–15697

    CAS  Google Scholar 

  438. Yin GP, Xu YH, MaYL ZPJ, Cheng XQ (2010) Nanosized core/shell silocon@carbon anode materials for lithium-ion batteries with polyvinylidene fluoride as carbon source. J Mater Chem 20:3216–3220

    Google Scholar 

  439. Yeh TS, Wu YS, Lee YH (2012) Electrochemical characterization with homopolymer of 2-propen-1-amine coating on artificial graphite/carbon/silicon composites as anode materials for lithium ion batteries. J Alloys Compd 515:90–95

    CAS  Google Scholar 

  440. Lin J, Peng Z, Xiang C, Ruan G, Yan Z, Natelson D, Tour JM (2013) Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7:6001–6006

    CAS  Google Scholar 

  441. Wu QH, Wang C, Ren JG (2013) Sn and SnO2–graphene composites as anode materials for lithium-ion batteries. Ionics 19:1875–1882

    CAS  Google Scholar 

  442. Ding SJ, Luan DY, Boey FYC, Chen JS, Lou XW (2011) SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem Commun 47:7155–7157

    CAS  Google Scholar 

  443. Wuang H, Cui LF, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980

    Google Scholar 

  444. Wang C, Zhang Q, Wu QH, No TW, Wong T, Ren J, Shi Z, Lee CS, Zhang W (2012) Facile synthesis of laminate-structured graphene sheet-Fe3O4 nanocomposites with superior high reversible specific capacity and cyclic stability for lithium-ion batteries. RSC Adv 2:10680–10688

    CAS  Google Scholar 

  445. Ding SJ, Chen JS, Luan DY, Boey FYC, Madhavi S, Lou XW (2011) Graphene-supported anatase TiO2 nanosheets for fast lithium storage. Chem Commun 47:5780–5782

    CAS  Google Scholar 

  446. Zhang LQ, Liu XH, Liu Y, Huang S, Zhu T, Gui L, Mao SX, Ye ZZ, Wang CM, Sullivan JP, Huang JY (2011) Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating. ACS Nano 5:4800–4809

    CAS  Google Scholar 

  447. Fu ZW, Huang F, Zhang Y, Chu Y, Qin QZ (2003) The electrochemical reaction of zinc oxide thin films with lithium. J Electrochem Soc 150:A714–A720

    CAS  Google Scholar 

  448. Wang Y, Zhang YF, Liu HR, Yu SJ, Qin QZ (2003) Nanocrystalline NiO thin film anode with MgO coating for Li-ion batteries. Electrochim Acta 48:4253–4259

    CAS  Google Scholar 

  449. Wang X, Li X, Sun X, Li F, Liu Q, Wang Q, He D (2011) Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem 21:3571–3573

    CAS  Google Scholar 

  450. Hassan MF, Rahman MM, Guo Z, Chen Z, Liu H (2010) SnO2–NiO–C nanocomposite as a high capacity anode material for lithium-ion batteries. J Mater Chem 20:9707–9712

    CAS  Google Scholar 

  451. Zhang CQ, Tu JP, Yuan YF, Huang XH, Chen XT, Mao F (2007) Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries. J Electrochem Soc 154:A65–A69

    CAS  Google Scholar 

  452. Belliard F, Irvine JTS (2001) Electrochemical performance of ball-milled ZnO–SnO2 systems as anodes in lithium-ion battery. J Power Sources 97–98:219–222

    Google Scholar 

  453. Hassan MF, Guo ZP, Chen Z, Liu HK (2010) Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. J Power Sources 195:2372–2376

    CAS  Google Scholar 

  454. Wang W, Sa Q, Chen J, Wang Y, Jung H, Yin Y (2013) Porous TiO2/C nanocomposites sheels as a high-performance anode material for lithium-ion batteries. ACS Appl Mater Interfaces 5:6478–6483

    CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. Henri Groult for valuable comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mauger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauger, A., Julien, C. Surface modifications of electrode materials for lithium-ion batteries: status and trends. Ionics 20, 751–787 (2014). https://doi.org/10.1007/s11581-014-1131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1131-2

Keywords

Navigation