Skip to main content
Log in

Naphthalene Diimides and Vanadium Pentoxide Composite Electrodes for Lithium Ion Batteries

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

N,N′-bis(4-pyridyl)-1,4,5,8-naphthalene diimide (NDI-py) and N,N′-bis(4-benzidine)-1,4,5,8-naphthalene diimide (NDI-bz) were intercalated into lamellar vanadium pentoxide (V2O5·nH2O) xerogels (VXG) in different quantities. Li+ electro-insertion-associated specific charge capacity was considerably improved for the composite electrodes towards pure VXG (125 mA h g–1 for NDI-py3 and 141 mA h g–1 for NDI-bz3 composites vs. 98 mA h g–1 for pure VXG, at 0.1 mA cm–2), even when bearing low imide amounts. Composites charge/discharge cyclability is also enhanced due to the presence of the imides, especially in the case of VXG/NDI-bz composite. Electrochemical impedance spectroscopy results proved that charge transfer at electrolyte/host matrix interface is the limiting step of the lithium ion electro-insertion. The present results are in agreement with the results obtained with N,N′-bis(4-aminophenyl)-1,4,5,8-naphthalene diimide (NDI-ph), and allow a systematic structure/property analysis of V2O5·nH2O/1,4,5,8-naphthalene diimides as cathode materials for Li+ batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Yao, J., Li, Y., Massé, R.C., Uchaker, E., and Cao, G., Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond, Energy Storage Mater., 2018, vol. 11, p. 205. https://doi.org/10.1016/j.ensm.2017.10.014

    Article  Google Scholar 

  2. Julien, C., Mauger, A., Zaghib, K., and Groult, H., Comparative issues of cathode materials for Li-ion batteries, Inorganics, 2014, vol. 2, p. 132. https://doi.org/10.3390/inorganics2010132

    Article  CAS  Google Scholar 

  3. Nitta, N., Wu, F., Lee, J.T., and Yushin, G., Li-ion battery materials: present and future, Mater. Today, 2015, vol. 18, p. 252. https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  4. Deng, D., Li-ion batteries: basics, progress, and challenges, Energy Sci. Eng., 2015, vol. 3, p. 385. https://doi.org/10.1002/ese3.95

    Article  Google Scholar 

  5. Zhou, H., Xin, F., Pei, B., and Whittingham, M.S., What limits the capacity of layered oxide cathodes in lithium batteries?, ACS Energy Lett., 2019, vol. 4, p. 1902. https://doi.org/10.1021/acsenergylett.9b01236

    Article  CAS  Google Scholar 

  6. Hu, B., Li, L., Xiong, X., Liu, L., Huang, C., Yu, D., and Chen, C., High-performance of copper-doped vanadium pentoxide porous thin films cathode for lithium-ion batteries, J. Solid State Electrochem., 2019, vol. 23, p. 1315. https://doi.org/10.1007/s10008-019-04220-w

    Article  CAS  Google Scholar 

  7. Anaissi, F.J., Demets, G.J.F., and Toma, H.E., Electrochemical conditioning of vanadium(V) pentoxide xerogel films, Electrochem. Commun., 1999, vol. 1, p. 332. https://doi.org/10.1016/S1388-2481(99)00067-3

    Article  CAS  Google Scholar 

  8. Liu, Q., Li, Z.F., Liu, Y., Zhang, H., Ren, Y., Sun, C.J., Lu, W., Zhou, Y., Stanciu, L., Stach, E.A., and Xie, J., Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries, Nat. Commun., 2015, vol. 6, p. 1. https://doi.org/10.1038/ncomms7127

    Article  CAS  Google Scholar 

  9. McNulty, D., Buckley, D.N., and O’Dwyer, C., Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes, J. Power Sources, 2014, vol. 267, p. 831. https://doi.org/10.1016/j.jpowsour.2014.05.115

    Article  CAS  Google Scholar 

  10. Chen, H., Armand, M., Demailly, G., Dolhem, F., Poizot, P., and Tarascon, J.-M., From biomass to a renewable {LiXC}6O6 organic electrode for sustainable Li-ion batteries, ChemSusChem., 2008, vol. 1, p. 348. https://doi.org/10.1002/cssc.200700161

    Article  PubMed  Google Scholar 

  11. Miroshnikov, M., Divya, K.P., Babu, G., Meiyazhagan, A., Arava, L.M.R., Ajayan, P.M., and John, G., Power from nature: designing green battery materials from electroactive quinone derivatives and organic polymers, J. Mater. Chem. A, 2016, vol. 4, p. 12370. https://doi.org/10.1039/c6ta03166h

    Article  CAS  Google Scholar 

  12. Häupler, B., Wild, A., and Schubert, U.S., Carbonyls: powerful organic materials for secondary batteries, Adv. Energy Mater., 2015, vol. 5, no. 11. https://doi.org/10.1002/aenm.201402034

  13. Kobaisi, M.Al., Bhosale, S.V., Latham, K., Raynor, A.M., and Bhosale, S.V., Functional naphthalene diimides: synthesis, properties, and applications, Chem. Rev., 2016, vol. 116, p. 11685. https://doi.org/10.1021/acs.chemrev.6b00160

    Article  CAS  PubMed  Google Scholar 

  14. Bhosale, S.V., Jani, C.H., and Langford, S.J., Chemistry of naphthalene diimides, Chem. Soc. Rev., 2008, vol. 37, p. 331. https://doi.org/10.1039/b615857a

    Article  CAS  PubMed  Google Scholar 

  15. Moraes, T.B.F., Schimidt, M.F.R.A., Bacani, R., Weber, G., Politi, M.J., Castanheira, B., Brochsztain, S., de Silva, F.A., Demets, G.J.F., and Triboni, E.R., Polysilsesquioxane naphthalenediimide thermo and photochromic gels, J. Lumin., 2018, vol. 204, p. 685. https://doi.org/10.1016/j.jlumin.2018.08.036

    Article  CAS  Google Scholar 

  16. Song, Z., Zhan, H., and Zhou, Y., Polyimides: promising energy-storage materials, Angew. Chem. – Int. Ed., 2010, vol. 49, p. 8444. https://doi.org/10.1002/anie.201002439

    Article  CAS  Google Scholar 

  17. Rosciano, F., Salamone, M.M., Ruffo, R., Sassi, M., and Beverina, L., Crosslinked electroactive polymers containing naphthalene-bisimide redox centers for energy storage, J. Electrochem. Soc., 2013, vol. 160, p. A1094. https://doi.org/10.1149/2.031308jes

    Article  CAS  Google Scholar 

  18. Xu, F., Xia, J., Shi, W., and Cao, S.A., Sulfonyl-based polyimide cathode for lithium and sodium secondary batteries: enhancing the cycling performance by the electrolyte, Mater. Chem. Phys., 2016, vol. 169, p. 192. https://doi.org/10.1016/j.matchemphys.2015.12.004

    Article  CAS  Google Scholar 

  19. Song, Z., Xu, T., Gordin, M.L., Jiang, Y.B., Bae, I.T., Xiao, Q., Zhan, H., Liu, J., and Wang, D., Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries, Nano Lett., 2012, vol. 12, p. 2205. https://doi.org/10.1021/nl2039666

    Article  CAS  PubMed  Google Scholar 

  20. Chen, M., Yang, C., Xu, Z., Tang, Y., Jiang, J., Liu, P., Su, Y., and Wu, D., A facile self-assembly strategy towards naphthalene diimide/graphene hybrids as high performance organic cathodes for lithium-ion batteries, RSC Adv., 2016, vol. 6, p. 13666. https://doi.org/10.1039/c5ra26181c

    Article  CAS  Google Scholar 

  21. De Araújo Silva, F., Cicolani, R.S., Lima, G., Huguenin, F., and Jean-François Demets, G., Enhanced Li+ charge storage in naphthalene diimide/vanadium pentoxide intercalates, RSC Adv., 2018, vol. 8, p. 24029. https://doi.org/10.1039/c8ra02970a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Silva, F.A., Huguenin, F., De Lima, S.M., and Demets, G.J.F., Lithium ion electrochemical insertion in vanadium pentoxide/cucurbit[6]uril intercalates, Inorg. Chem. Front., 2014, vol. 1, p. 495. https://doi.org/10.1039/c4qi00069b

    Article  CAS  Google Scholar 

  23. DeBlase, C.R., Hernández-Burgos, K., Rotter, J.M., Fortman, D.J., dos Abreu, S.D., Timm, R.A., Diógenes, I.C.N., Kubota, L.T., Abruña, H.D., and Dichtel, W.R., Cation-dependent stabilization of electrogenerated naphthalene diimide dianions in porous polymer thin films and their application to electrical energy storage, Angew. Chem., 2015, vol. 127, p. 13423. https://doi.org/10.1002/ange.201505289

    Article  Google Scholar 

  24. Guha, S. and Saha, S., Fluoride ion sensing by an anion-π interaction, J. Am. Chem. Soc., 2010, vol. 132, p. 17674. https://doi.org/10.1021/ja107382x

    Article  CAS  PubMed  Google Scholar 

  25. Guha, S., Goodson, F.S., Corson, L.J., and Saha, S., Boundaries of anion/naphthalenediimide interactions: from anion-π interactions to anion-induced charge-transfer and electron-transfer phenomena, J. Am. Chem. Soc., 2012, vol. 134, p. 13679. https://doi.org/10.1021/ja303173n

    Article  CAS  PubMed  Google Scholar 

  26. Castaldelli, E., Imalka Jayawardena, K.D.G., Cox, D.C., Clarkson, G.J., Walton, R.I., Le-Quang, L., Chauvin, J., Silva, S.R.P., and Demets, G.J.F., Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework, Nat. Commun., 2017, vol. 8, no. 1. https://doi.org/10.1038/s41467-017-02215-7

  27. Livage, J., Henry, M., and Sanchez, C., Sol-gel chemistry of transition metal oxides, Prog. Solid State Chem., 1988, vol. 18, p. 259.

    Article  CAS  Google Scholar 

  28. Galiote, N.A., Camargo, M.N.L., Iost, R.M., Crespilho, F., and Huguenin, F., Effects of self-assembled materials prepared from V2O5 for lithium ion electroinsertion, Langmuir, 2011, vol. 27, p. 12209. https://doi.org/10.1021/la202227t

    Article  CAS  PubMed  Google Scholar 

  29. Almuaibed, A.M. and Townshend, A., Individual and sequential flow injection spectrophotometric determination of vanadium(V) and titanium(IV), Fresenius’ Z. Anal. Chem., 1989, vol. 335, p. 905. https://doi.org/10.1007/BF00466379

    Article  CAS  Google Scholar 

  30. Kundu, S., Satpati, B., Mukherjee, M., Kar, T., and Pradhan, S.K., Hydrothermal synthesis of polyaniline intercalated vanadium oxide xerogel hybrid nanocomposites: effective control of morphology and structural characterization, New J. Chem., 2017, vol. 41, p. 3634. https://doi.org/10.1039/c7nj00372b

    Article  CAS  Google Scholar 

  31. Perera, S.D., Archer, R.B., Damin, C.A., Mendoza-Cruz, R., and Rhodes, C.P., Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage, J. Power Sources, 2017, vol. 343, p. 580. https://doi.org/10.1016/j.jpowsour.2017.01.052

    Article  CAS  Google Scholar 

  32. More, S., Khupse, N., Bhosale, M., Ambekar, J., Kulkarni, M., and Kale, B., Hierarchical nanostructured benzoic naphthalene tetracarboxylic di-imide organic cathode for lithium ion battery, Chem. Select., 2020, vol. 5, p. 2157. https://doi.org/10.1002/slct.201904741

    Article  CAS  Google Scholar 

  33. Lakraychi, A.E., Fahsi, K., Aymard, L., Poizot, P., Dolhem, F., and Bonnet, J.P., Carboxylic and sulfonic N-substituted naphthalene diimide salts as highly stable non-polymeric organic electrodes for lithium batteries, Electrochem. Commun., 2017, vol. 76, p. 47. https://doi.org/10.1016/j.elecom.2017.01.019

    Article  CAS  Google Scholar 

  34. Tian, B., Ning, G.-H., Gao, Q., Tan, L.-M., Tang, W., Chen, Z., Su, C., and Loh, K.P., Crystal engineering of naphthalenediimide-based metal{\textendash}organic frameworks: structure-dependent lithium storage, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 310676. https://doi.org/10.1021/acsami.6b11772

    Article  CAS  Google Scholar 

  35. Lv, M., Zhang, F., Wu, Y., Chen, M., Yao, C., Nan, J., Shu, D., Zeng, R., Zeng, H., and Chou, S.-L., Heteroaromatic organic compound with conjugated multi-carbonyl as cathode material for rechargeable lithium batteries, Sci. Rep., 2016, vol. 6, no. 1, p. 23515. https://doi.org/10.1038/srep23515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ivanishchev, A.V., Gridina, N.A., Rybakov, K.S., Ivanishcheva, I.A., and Dixit, A., Structural and electrochemical investigation of lithium ions insertion processes in polyanionic compounds of lithium and transition metals, J. Electroanal. Chem., 2020, vol. 860, p. 113894. https://doi.org/10.1016/j.jelechem.2020.113894

    Article  CAS  Google Scholar 

  37. Ivanishchev, A.V. and Ivanishcheva, I.A., Ion transport in lithium electrochemical systems: problems and solutions, Russ. J. Electrochem., 2020, vol. 56, p. 1002. https://doi.org/10.1134/S1023193520100055.

  38. Ho, C., Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films, J. Electrochem. Soc., 1980, vol. 127, p. 343. https://doi.org/10.1149/1.2129668

    Article  CAS  Google Scholar 

  39. Orazem, M.E. and Tribollet, B., Electrochemical Impedance Spectroscopy, Hoboken, NJ: John Wiley & Sons, 2008.

    Book  Google Scholar 

  40. Bruce, P., Solid State Electrochemistry, Cambridge Univ. Press, 1995.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank to Dr. Ivana A. Borin, and Dr. Rodrigo Ferreira Silva for the AFM and ESM imaging, and Osvaldo Antonio Serra for the TG analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. de A. Silva or G. Lima.

Ethics declarations

Authors announce that there is no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

F. de A. Silva, Lima, G. & Demets, G.JF. Naphthalene Diimides and Vanadium Pentoxide Composite Electrodes for Lithium Ion Batteries. Russ J Electrochem 58, 433–443 (2022). https://doi.org/10.1134/S1023193522060106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522060106

Keywords:

Navigation