Skip to main content
Log in

Surface Modification of Glassy Carbon Electrode Using Hematoxylin and MWCNTs/Fe3O4/TiO2 Nanocomposite; a Sensitive Electrochemical Technique for Detection of Methyldopa in the Presence of Folic Acid

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A sensitive electrochemical sensor was developed by modifying a glassy carbon electrode (GCE) with hematoxylin and MWCNTs/Fe3O4/TiO2 nanocomposite for the improved detection of methyldopa in the presence of folic acid. Electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CHA) were used to describe the electrochemical performance of the hematoxylin–MWCNTs/Fe3O4/TiO2/GCE for methyldopa and folic acid sensing studies. Methyldopa and folic acid were detected by DPV method at 190  and 720 mV, respectively. Due to the synergistic effect of the hematoxylin and MWCNTs/Fe3O4/TiO2 nanocomposite, the modified electrode exhibited good sensing performance to methyldopa and folic acid in the range of 0.5–300  μM with detection limit of 0.02 μM. Also, this method was applied for the quantification of methyldopa and folic acid in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Conway, E.L., Louis, W.J., and Jarrott, B., The effect of acute α-methyldopa administration on catecholamine levels in anterior hypothalamic-preoptic and medullary nuclei in rat brain, Neuropharmacology, 1979, vol. 18, p. 279.

    Article  CAS  PubMed  Google Scholar 

  2. Fouladgar, M. and Ahmadzadeh, S., Application of a nanostructured sensor based on NiO nanoparticles modified carbon paste electrode for determination of methyldopa in the presence of folic acid, Appl. Surf. Sci., 2016, vol. 379, p. 150.

    Article  CAS  Google Scholar 

  3. Unnikrishnan, B., Yang, Y.L., and Chen, S.M., Amperometric determination of folic acid at multi-walled carbon nanotube-polyvinyl sulfonic acid composite film modified glassy carbon electrode, Int. J. Electrochem. Sci., 2011, vol. 6, p. 3224.

    CAS  Google Scholar 

  4. Prasad, B.B., Madhuri, R., Tiwari, M.P., and Sharma, P.S., Electrochemical sensor for folic acid based on a hyperbranched molecularly imprinted polymer-immobilized sol–gel-modified pencil graphite electrode, Sens. Actuators B: Chem., 2010, vol. 146, p. 321.

    Article  CAS  Google Scholar 

  5. Zhang, D., Ouyang, X., Ma, W., Li, L., and Zhang, Y., Voltammetric determination of folic acid using adsorption of methylene blue onto electrodeposited of reduced graphene oxide film modified glassy carbon electrode, Electroanalysis, 2016, vol. 28, p. 312.

    Article  CAS  Google Scholar 

  6. Kalimuthu, P. and John, S.A., Selective electrochemical sensor for folic acid at physiological pH using ultrathin electropolymerized film of functionalized thiadiazole modified glassy carbon electrode, Biosens. Bioelectron., 2009, vol. 24, p. 3575.

    Article  CAS  PubMed  Google Scholar 

  7. Shaw, G.M., Schaffer, D., Velie, E.M., Morland, K., and Harris, J.A., Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defects, Epidemiology, 1995, vol. 6, p. 219.

    Article  CAS  PubMed  Google Scholar 

  8. Mulinare, J., Cordero, J.F., Erickson, J.D., and Berry, R.J., Periconceptional use of multivitamins and the occurrence of neural tube defects, Jama, 1988, vol. 260, p. 3141.

    Article  CAS  PubMed  Google Scholar 

  9. Milunsky, A., Jick, H., Jick, S.S., Bruell, C.L., MacLaughlin, D.S., Rothman, K.J., and Willett, W., Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects, Jama, 1989, vol. 262, p. 2847.

    Article  CAS  PubMed  Google Scholar 

  10. Salmanipour, A., Taher, M.A., and Beitollahi, H., Voltammetric behavior of a multi-walled carbon nanotube modified electrode-ferrocene electrocatalyst system as a sensor for determination of methyldopa in the presence of folic acid, Anal. Methods, 2012, vol. 4, p. 2982.

    Article  CAS  Google Scholar 

  11. Emara, S., Masujima, T., Zarad, W., Kamal, M., Fouad, M., and El-Bagary, R., A combination of isocratic and gradient elution modes in HPLC with the aid of time-overlapping process for rapid determination of methyldopa in human urine, J. Liq. Chromatogr. Relat. Technol., 2015, vol. 38, p. 153.

    Article  CAS  Google Scholar 

  12. El-Leithy, E.S., Abdel-Bar, H.M., and El-Moneum, R.A., Validation of high performance liquid chromatographic method for folic acid assay, Int. J. Pharm. Sci. Invent., 2018, vol. 7, p. 1.

    CAS  Google Scholar 

  13. Zayed, A., Bustami, R., Alabsi, W., and El-Elimat, T., Development and validation of a rapid high-performance liquid chromatography-tandem mass spectrometric method for determination of folic acid in human plasma, Pharmaceuticals, 2018, vol. 11, p. 52.

    Article  PubMed Central  CAS  Google Scholar 

  14. Gadkariem, E.A., Ibrahim, K.E.E., Kamil, N.A.A., Haga, M.E.M., and El-Obeid, H.A., A new spectrophotometric method for the determination of methyldopa, Saudi Pharm. J., 2009, vol. 17, p. 289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, X. and Chen, L., Fluorescence probe based on an amino-functionalized fluorescent magnetic nanocomposite for detection of folic acid in serum, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 31832.

    Article  CAS  PubMed  Google Scholar 

  16. Nozaki, O., Iwaeda, T., Moriyama, H., and Kato, Y., Chemiluminescent detection of catecholamines by generation of hydrogen peroxide with imidazole, Luminescence, 1999, vol. 14, p. 123.

    Article  CAS  PubMed  Google Scholar 

  17. Han, S. and Chen, X., Copper nanoclusters-enhanced chemiluminescence for folic acid and nitrite detection, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2019, vol. 210, p. 315.

    Article  CAS  Google Scholar 

  18. Uysal, U.D., Oncu-Kaya, E.M., and Tunçel, M., Determination of folic acid by CE in various cultivated variety of lentils, Chromatographia, 2010, vol. 71, p. 653.

    Article  CAS  Google Scholar 

  19. Sanati, A.L. and Faridbod, F., Electrochemical determination of methyldopa by graphene quantum dot/1-butyl-3-methylimidazolium hexafluoro phosphate nanocomposite electrode, Int. J. Electrochem. Sci., 2017, vol. 12, p. 7997.

    Article  CAS  Google Scholar 

  20. Dehnavi, A. and Soleymanpour, A., Highly sensitive voltammetric electrode for the trace measurement of methyldopa based on a pencil graphite modified with phosphomolibdate/graphene oxide, Microchem. J., 2020, vol. 157, p. 104969.

    Article  CAS  Google Scholar 

  21. Senthilkumar, E., Shanmugharaj, A.M., Babu, R.S., Sundari, G.S., Kumar, K.T., Raghu, S., and Kalaivani, R., Development of constructed nanoporous graphene-modified electrode for electrical detection of folic acid, J. Mater. Sci. Mater. Electron., 2019, vol. 30, p. 13488.

    Article  CAS  Google Scholar 

  22. Chekin, F., Teodorescu, F., Coffinier, Y., Pan, G.H., Barras, A., Boukherroub, R., and Szunerits, S., MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum, Biosens. Bioelectron., 2016, vol. 85, p. 807.

    Article  CAS  PubMed  Google Scholar 

  23. Karimi-Maleh, H., Karimi, F., Alizadeh, M., and Sanati, A.L., Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems, Chem. Rec., 2020, vol. 20, p. 682.

    Article  CAS  PubMed  Google Scholar 

  24. Tajik, S., Beitollahi, H., Garkani-Nejad, F., Kirlikovali, K.O., Van Le, Q., Jang, H.W., Varma, R.S., Farha, O.K., and Shokouhimehr, M., Recent electrochemical applications of metal–organic framework-based materials, Cryst. Growth Des., 2020, vol. 20, p. 7034.

    Article  CAS  Google Scholar 

  25. Payehghadr, M., Taherkhani, Y., Maleki, A., and Nourifard, F., Selective and sensitive voltammetric sensor for methocarbamol determination by molecularly imprinted polymer modified carbon paste electrode, Eurasian Chem. Commun., 2020, vol. 2, p. 982.

    CAS  Google Scholar 

  26. Beitollahi, H., Tajik, S., Garkani-Nejad, F., and Safaei, M., Recent advances in ZnO nanostruture based electrochemical sensors and biosensors, J. Mater. Chem. B, 2020, vol. 8, p. 5826.

    Article  PubMed  Google Scholar 

  27. Ershad, S. and Mofidi Rasi, R., Electrocatalytic oxidation of sulfite Ion at the surface carbon ceramic modified electrode with prussian blue, Eurasian Chem. Commun., 2019, vol. 1, p. 43.

    CAS  Google Scholar 

  28. Yola, M.L. and Atar, N., Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer, Biosens. Bioelectron., 2019, vol. 126, p. 418.

    Article  CAS  PubMed  Google Scholar 

  29. Karimi-Maleh, H., Karimi, F., Malekmohammadi, S., Zakariae, N., Esmaeili, R., Rostamnia, S., Yola, M.L., Atar, N., Movagharnezhad, S., Rajendran, S., Razmjou, A., Orooji, Y., Agarwal, S., Gupta, V.K., and Razmjou, A., An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples, J. Mol. Liq., 2020, vol. 310, p. 113185.

    Article  CAS  Google Scholar 

  30. Montazarolmahdi, M., Masrournia, M., and Nezhadali, A., A new electrochemical approach for the determination of phenylhydrazine in water and wastewater samples using amplified carbon paste electrode, Chem. Methodol., 2020, vol. 4, p. 732.

    CAS  Google Scholar 

  31. Tajik, S., Beitollahi, H., and Biparva, P., Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite, J. Serb. Chem. Soc., 2018, vol. 83, p. 863.

    Article  CAS  Google Scholar 

  32. Miraki, M., Karimi-Maleh, H., Taher, M.A., Cheraghi, S., Karimi, F., Agarwal, S., and Gupta, V.K., Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa, J. Mol. Liq., 2019, vol. 278, p. 672.

    Article  CAS  Google Scholar 

  33. Esfandiari-Baghbamidi, S., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol, Int. J. Electrochem. Sci., 2016, vol. 11, p. 10874.

    Article  CAS  Google Scholar 

  34. Zare, H.R. and Nasirizadeh, N., Simultaneous determination of ascorbic acid, adrenaline and uric acid at a hematoxylin multi-wall carbon nanotube modified glassy carbon electrode, Sens. Actuators B: Chem., 2010, vol. 143, p. 666.

    Article  CAS  Google Scholar 

  35. Litvin, V.A., Minaev, B.F., and Baryshnikov, G.V., Synthesis and properties of synthetic fulvic acid derived from hematoxylin, J. Mol. Struct., 2015, vol. 1086, p. 25.

    Article  CAS  Google Scholar 

  36. Sioi, M., Bolosis, A., Kostopoulou, E., and Poulios, I., Photocatalytic treatment of colored wastewater from medical laboratories: photocatalytic oxidation of hematoxylin, J. Photochem. Photobiol. A: Chem., 2006, vol. 184, p. 18.

    Article  CAS  Google Scholar 

  37. Mohammadi, S., Taher, M.A., and Beitollahi, H., Treated screen printed electrodes based on electrochemically reduced graphene nanoribbons for the sensitive voltammetric determination of dopamine in the presence of uric acid, Electroanalysis, 2020, vol. 32, p. 2036.

    Article  CAS  Google Scholar 

  38. Prasad, P. and Sreedhar, N.Y., Effective SWCNTs/Nafion electrochemical sensor for detection of dicapthon pesticide in water and agricultural food samples, Chem. Methodol., 2018, vol. 2, p. 277.

    CAS  Google Scholar 

  39. Baghizadeh, A., Karimi-Maleh, H., Khoshnama, Z., Hassankhani, A., and Abbasghorbani, M., A voltammetric sensor for simultaneous determination of vitamin c and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode, Food Anal. Methods, 2015, vol. 8, p. 549.

    Article  Google Scholar 

  40. Khalilzadeh, M.A., Tajik, S., Beitollahi, H., and Venditti, R.A., Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@CNC/Cu): investigation of catalytic activity for the development of a venlafaxine electrochemical sensor, Ind. Eng. Chem. Res., 2020, vol. 59, p. 4219.

    Article  CAS  Google Scholar 

  41. Tajik, S., Beitollahi, H., Won Jang, H., and Shokouhimehr, M., A screen printed electrode modified with Fe3O4@polypyrrole–Pt core–shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine, Talanta, 2021, vol. 232, p. 122379.

    Article  CAS  PubMed  Google Scholar 

  42. Karimi-Maleh, H., Alizadeh, M., Orooji, Y., Karimi, F., Baghayeri, M., Rouhi, J., Tajik, S., Beitollahi, H., Agarwal, S., Gupta, V.K., Rajendran, S., Rostamnia, S., Fu, L., Saberi-Movahed, F., and Malekmohammadi, S., Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: a docking/experimental investigation, Ind. Eng. Chem. Res., 2021, vol. 60, p. 816.

    Article  CAS  Google Scholar 

  43. De Volder, M.F., Tawfick, S.H., Baughman, R.H., and Hart, A.J., Carbon nanotubes: present and future commercial applications, Science, 2013, vol. 339, p. 535.

    Article  CAS  PubMed  Google Scholar 

  44. Bozal-Palabiyik, B., Dogan-Topal, B., Uslu, B., Can, A., and Ozkan, S.A., Sensitive voltammetric assay of etoposide using modified glassy carbon electrode with a dispersion of multi-walled carbon nanotube, J. Solid State Electrochem., 2013, vol. 17, p. 2815.

    Article  CAS  Google Scholar 

  45. Banks, C.E., Crossley, A., Salter, C., Wilkins, S.J., and Compton, R.G., Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes, Angew. Chem. Int. Ed., 2006, vol. 45, p. 2533.

    Article  CAS  Google Scholar 

  46. Tahernejad-Javazmi, F., Shabani-Nooshabadi, M., and Karimi-Maleh, H., Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte, Talanta, 2018, vol. 176, p. 208.

    Article  CAS  PubMed  Google Scholar 

  47. Cardoso, R.M., Montes, R.H., Lima, A.P., Dornellas, R.M., Nossol, E., Richter, E.M., and Munoz, R.A., Multi-walled carbon nanotubes: size-dependent electrochemistry of phenolic compounds, Electrochim. Acta, 2015, vol. 176, p. 36.

    Article  CAS  Google Scholar 

  48. Li, X., Chen, Z., Zhong, Y., Yang, F., Pan, J., and Liang, Y., Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip, Anal. Chim. Acta, 2012, vol. 710, p. 118.

    Article  CAS  PubMed  Google Scholar 

  49. Karimi-Maleh, H., Cellat, K., Arıkan, K., Savk, A., Karimi, F., and Şen, F., Palladium–nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing, Mater. Chem. Phys., 2020, vol. 250, p. 123042.

    Article  CAS  Google Scholar 

  50. Jain, R. and Sharma, S., Glassy carbon electrode modified with multiwalled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems, J. Pharm. Anal., 2012, vol. 2, p. 56.

    Article  CAS  PubMed  Google Scholar 

  51. Chen, R., Song, G., and Wei, Y., Synthesis of variable-sized Fe3O4 nanocrystals by visible light irradiation at room temperature, J. Phys. Chem. C, 2010, vol. 114, p. 13409.

    Article  CAS  Google Scholar 

  52. Lu, A.H., Salabas, E.E., and Schüth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 2007, vol. 46, p. 1222.

    Article  CAS  Google Scholar 

  53. Chavhan, P.M., Reddy, V., and Kim, C., Nanostructured titanium oxide platform for application to ascorbic acid detection, Int. J. Electrochem. Sci., 2012, vol. 7, p. 5420.

    CAS  Google Scholar 

  54. Beitollahi, H. and Salimi, H., A triple electrochemical platform for simultaneous determination of isoproterenol, acetaminophen and tyrosine based on a glassy carbon electrode modified with hematoxylin and graphene, J. Electrochem. Soc., 2016, vol. 163, p. H1157.

    Article  CAS  Google Scholar 

  55. Bard, A.J. and Faulkner, L.R., Electrochemical Methods Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.

    Google Scholar 

  56. Vahedi, J., Karimi-Maleh, H., Baghayeri, M., Sanati, A.L., Khalilzadeh, M.A., and Bahrami, M., A fast and sensitive nanosensor based on MgO nanoparticle room-temperature ionic liquid carbon paste electrode for determination of methyldopa in pharmaceutical and patient human urine samples, Ionics, 2013, vol. 19, no. 12, p. 1907.

    Article  CAS  Google Scholar 

  57. Ensafi, A.A., Saeid, B., Rezaei, B., and Allafchian, A.R., Differential pulse voltammetric determination of methyldopa using MWCNTs modified glassy carbon decorated with NiFe2O4 nanoparticles, Ionics, 2015, vol. 21, no. 5, p. 1435.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakineh Esfandiari Baghbamidi.

Ethics declarations

The author confirms that this article content has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakineh Esfandiari Baghbamidi Surface Modification of Glassy Carbon Electrode Using Hematoxylin and MWCNTs/Fe3O4/TiO2 Nanocomposite; a Sensitive Electrochemical Technique for Detection of Methyldopa in the Presence of Folic Acid. Russ J Electrochem 58, 451–463 (2022). https://doi.org/10.1134/S1023193522060040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522060040

Keywords:

Navigation