Skip to main content
Log in

Formation and Physicochemical Properties of Composite Electrochemical Coatings of Tin–Nickel Alloy with Silicon Dioxide Incapsulated by Nanosized Titanium Dioxide

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The “SiO2 core–TiO2 shell” composite particles are synthesized and their properties are studied. Using the method of X-ray diffraction analysis, it is found that titanium dioxide in the composite is in the anatase crystal modification with crystallites 6–8 nm in size. The core–shell composites with a titanium dioxide content of 32 wt % have a specific surface area of 220 m2/g and a sorption volume of about 0.3 cm3/g. The effect of SiO2 core–TiO2 shell composite introduced into the electrolyte on the cathodic polarization of the electrochemical deposition of Sn–Ni alloy in the fluoride–chloride electrolyte is determined using the method of voltammetry. The morphology (SEM) and phase composition (XRD) of electrochemical coatings, which were deposited from the electrolytes with various concentrations of the composite, are studied. It is shown that the introduced SiO2 core–TiO2 shell composite has an effect on the activation energy of electrodeposition of the coatings based on the tin–nickel alloy. The concentration of SiO2 core–TiO2 shell composite in the electrolyte should be 2 g/dm3. The titanium content in the coating is 0.19 wt %. The dependence of microroughness and hardness of the coatings on the concentration of the composite in the electrolyte is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Murashkevich, A.N., Alisienok, O.A., and Zharskii, I.M., Physicochemical and photocatalytic properties of nanosized titanium dioxide deposited on silicon dioxide microspheres, Kinet. Catal., 2011, vol. 52, p. 809. https://doi.org/10.1134/S0023158411060140

    Article  CAS  Google Scholar 

  2. Fatimah, I., Prakoso, N.I., Sahroni, I., Musawwa, M.M., Sim, Y.L., Kooli, F., and Muraza, O., Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves, Heliyon, 2019, vol. 5, no. 11, p. e02766. https://doi.org/10.1016/j.heliyon.2019.e02766

    Article  PubMed  PubMed Central  Google Scholar 

  3. Titanium Dioxide (TiO 2 ) and Its Applications, Parrino, Fr. and Palmisano, L., Eds., Elsevier Metal Oxides Series, Korotcenkov, G., Ed., Cambridge: Elsevier, 2021.

  4. Zhonghou, Xu, Chuanyong, J., Fasheng, Li, and Xiaoguang, M., Mechanisms of photocatalytical degradation of monomethylarsonic and dimethylarsinic acids using nanocrystalline titanium dioxide, Environ. Sci. Technol., 2008, vol. 42, no. 7, p. 2349.

    Article  Google Scholar 

  5. Narewadikar, N.A., Suryavanshi, R.D., and Rajpure, K.Y., Enhanced photoelectrocatalytic degradation activity of titanium dioxide photoelectrode: effect of film thickness, Colloid J., 2021, vol. 83, p. 107. https://doi.org/10.1134/s1061933x21010099

    Article  CAS  Google Scholar 

  6. Natarajan, K., Singh, P., Bajaj, H.C., and Tayade, R.J., Facile synthesis of TiO2/ZnFe2O4 nanocomposite by sol-gel auto combustion method for superior visible light photocatalytic efficiency, Korean J. Chem. Eng., 2016, vol. 33, no. 6, p. 1788. https://doi.org/10.1007/s11814-016-0051-4

    Article  CAS  Google Scholar 

  7. Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C., Titanium dioxide-based nanomaterials for photocatalytic fuel generations, Chem. Rev., 2014, vol. 114, no. 19, p. 9987. https://doi.org/10.1021/cr500008u

    Article  CAS  PubMed  Google Scholar 

  8. Wilhelm, P., Stephan, D., and Zetzsch, C., Titania coated silica nano-spheres as catalyst in the photodegradation of hydrocarbons, Prog. Colloid Polym. Sci., 2006, p. 147. https://doi.org/10.1007/3-540-32702-9_23

  9. Kalele, S., Dey, R., Hebalkar, N., Urban, J., Gosavi, S.W., and Kulkarni, S.K., Synthesis and characterization of silica–titania core–shell particles, Pramana, 2005, vol. 65, no. 5, p. 787. https://doi.org/10.1007/bf02704076

    Article  CAS  Google Scholar 

  10. Murashkevich, A.N., Lavitskaya, A.S., Alisienok, O.A., and Zharskii, I.M., Fabrication and properties of SiO2/TiO2 composites, Inorg. Mater., 2009, vol. 45, p. 1146. https://doi.org/10.1134/S0020168509100124

    Article  CAS  Google Scholar 

  11. Pyanko, A.V., Makarova, I.V., Kharitonov, D.S., Makeeva, I.S., Sergievich, D.S., and Chernik, A.A., Physicochemical and biocidal properties of nickel–tin and nickel–tin–titania coatings, Prot. Met. Phys. Chem. Surf., 2021, vol. 57, p. 88. https://doi.org/10.1134/S2070205121010160

    Article  CAS  Google Scholar 

  12. Benea, L. and Celis, J.P., Effect of nano-TiC dispersed particles and electro-codeposition parameters on morphology and structure of hybrid Ni/TiC nanocomposite layers, Materials (Basel), 2016, vol. 6, no. 9, p. 269. https://doi.org/10.3390/ma9040269

    Article  CAS  Google Scholar 

  13. Mozhgan, S., Mahdi, M., and Seyed, M.E., Superhydrophobic and corrosion resistant properties of electrodeposited Ni–TiO2/TMPSi nanocomposite coating, Colloids Surf., A, 2019, vol. 573, p. 196. https://doi.org/10.1016/j.colsurfa.2019.04.024

    Article  CAS  Google Scholar 

  14. Antikhovich, I.V., Chernik, A.A., and Zharskii, I.M., Electrochemical deposition of nickel from acetate–chloride electrolyte in the presence of ammonium acetate, Vestnik BSU, 2014, no. 1(2), p. 15.

  15. Balakai, V.I., Arzumanova, A.V., Murzenko, K.V., Byrylov, I.F., and Kukoz, V.F., Characteristics of nickel coatings deposited from chloride bath, Electroplating and Surface Treatment, 2009, vol. 17, no. 4, p. 32.

    Google Scholar 

  16. Mozhgan, S., Mahdi, M., Seyed, M.E., and Mohammad, A., The role of TiO2 nanoparticles on the topography and hydrophobicity of electrodeposited Ni–TiO2 composite coating, Surf. Topogr.: Metrol. Prop., 2020, vol. 8, no. 2, p. 025008.

    Article  Google Scholar 

  17. Rogozhin, V.V., Spasskaya, M.M., Anan’eva, E.Yu., Yarovaya, E.I., and Abramov, A.M., Use of boron-containing substances for fabricating functional nickel–boron coatings for various purposes, Vestnik NNGU, 2012, no. 4(1), p. 140.

  18. Ehrlich, A., Kucenic, M., and Belsito, D.V., Role of body piercing in the induction of metal allergies, Am. J. Contact Dermat., 2001, vol. 12, no. 3, p. 151. https://doi.org/10.1097/01634989-200109000-00004

    Article  CAS  PubMed  Google Scholar 

  19. Beck, U., Reiners, G., Urban, I., Jehn, H.A., Kopacz, U., and Schack, H., Decorative hard coatings: new layer systems without allergy risk, Surf. Coat. Technol., 1993, vol. 61, p. 215. https://doi.org/10.1016/0257-8972(93)90228-G

    Article  CAS  Google Scholar 

  20. Cronin, E., Contact Dermatitis, Churchill-Livingstone: London, 1980.

    Google Scholar 

  21. Kositsyn, S.V., Alloys and Coatings Based on Nickel Monoaluminide, Yekaterinburg: Ural Branch of Russian Academy of Sciences, 2008.

    Google Scholar 

  22. Biryukova, N.M., Lipai, M.S., and Sokolov, V.G., Investigation of nickel-based alloys used in electronic instrumentation, Proc. 1st Int. Scientific Conf. “Technical Sciences: Problems and Prospects,” Saint Petersburg: Renome, 2011, p. 89.

  23. Jeong, S.E., Jung, S.B., and Yoon, J.W., Fast formation of Ni–Sn intermetallic joints using Ni–Sn paste for high-temperature bonding applications. J. Mater. Sci.: Mater. Electron., 2020, vol. 31, p. 15048.

    CAS  Google Scholar 

  24. Roshchin, V.M., Petukhov, I.N., Gak, A.S., Mikhailova, M.S., and Fedorov, V.A., Thermal cycling study of electrodeposited Sn–Ni and In–Ni Alloys, Inorg. Mater., 2020, vol. 56, no. 3, p. 254. https://doi.org/10.1134/S0020168520030176

    Article  CAS  Google Scholar 

  25. Pyanko, A.V., Makarova, I.V., Kharitonov, D.S., Alisienok, O.A., Chernik, A.A., and Makeeva, I.S., Tin–nickel–titania composite coatings, Inorg. Mater., 2019, vol. 55, no. 6, p. 568.

    Article  CAS  Google Scholar 

  26. Kuznetsov, B.V., Vorobyova, T.N., and Glibin, V.P., A comparative study of tin–nickel alloys obtained by electroplating and casting, Metal Finish., 2013, vol. 111, p. 38.

    Article  CAS  Google Scholar 

  27. Murashkevich, A.N., Lavitskaya, A.S., Alisienok, O.A., and Zharskii, I.M., Fabrication and properties of SiO2/TiO2 composites, Inorg. Mater., 2009, vol. 45, p. 1146.

    Article  CAS  Google Scholar 

  28. Murashkevich, A.N., Alisienok, O.A., and Zharsky, I.M., Fabrication and study of titanium dioxide hydrosols, Sviridov Readings, 2009, no. 5, p. 161.

  29. Rosolymou, E., Spanou, S., Zanella, C., Tsoukleris, D.S., Köhler, S., Leisner, P., and Pavlatou, E.A., Electrodeposition of photocatalytic Sn–Ni matrix composite coatings embedded with doped TiO2 particles, Coatings, 2020, vol. 10, p. 775. https://doi.org/10.3390/coatings10080775

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors are grateful to the Center of Physicochemical Methods of Investigation, Belarusian State Technological University, for help in studying the structure of the specimens. We are grateful to O. Bachko (Belarusian State Technological University) for her help in conducting electrochemical studies.

Funding

The work was performed with support of Ministry of Education of the Republic of Belarus (GB 19-111 “Electrochemical composite coatings with photocatalytic properties based on tin alloys”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pyanko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by T. Kabanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyanko, A.V., Alisienok, O.A., Kubrak, P.B. et al. Formation and Physicochemical Properties of Composite Electrochemical Coatings of Tin–Nickel Alloy with Silicon Dioxide Incapsulated by Nanosized Titanium Dioxide. Russ J Electrochem 58, 418–424 (2022). https://doi.org/10.1134/S1023193522040115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522040115

Keywords:

Navigation