Skip to main content
Log in

A Novel Electrochemical Sensor for Epinephrine in the Presence of Acetylcholine Based on Modified Screen-Printed Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In the present study, magnetic core shell manganese ferrite nanoparticles-screen printed electrode (MCSNP/SPE) was fabricated and applied for the determination of the epinephrine (EP) in the presence of acetylcholine (ACh). The electrochemical behavior of epinephrine (EP) was studied by cyclic voltammetry, square wave voltammetry and chronoamperometry. The MCSNP/SPE had electrocatalytic activity toward the EP oxidation higher than bare SPE. It has been found that under an optimum condition, the oxidation of EP at the surface of MCSNP/SPE occurs at a potential about 70 mV less positive than that of an unmodified SPE. Based on the results, the linear oxidation peak current was 0.3–300 μmol L−1 and the correlation coefficient was obtained to be 0.999. According to the three times standard deviation (3Sb) of the blank, the detection limit was calculated 0.08 μmol L−1. Our results showed an increase in selectivity, stability and reproducibility for the MCSNP/SPE, which significantly could measure EP and ACh in EP ampoule, urine and serum samples. It can be concluded that the MCSNP/SPE has promising capacity in developing the electrochemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Wierzbicka, E. and Sulka, G.D., Fabrication of highly ordered nanoporous thin Au films and theirapplication for electrochemical determination of epinephrine, Sens. Actuators B, 2016, vol. 222, p. 270.

    Article  CAS  Google Scholar 

  2. Kemp, S.F., Lockey, R.F., and Simons, F.E.R., Epinephrine: the drug of choice foranaphylaxis. A statement of the World Allergy Organization, Allergy, 2008, vol. 63, p. 1061.

    Article  CAS  PubMed  Google Scholar 

  3. Li, J., Wang, X., Duan, H., Wang, Y., and Luo, C., Ultra-sensitive determination of epinephrine based on TiO2–Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites, Mater. Sci. Eng. C, 2016, vol. 64, p. 391.

    Article  CAS  Google Scholar 

  4. Bergquist, J., Sciubis, A., Kaczor, A., and Silberring, J., Catecholamines and methods for their identification and quantitation in biological tissues and fluids, J. Neurosci. Methods, 2002, vol. 113, p. 1.

    Article  CAS  PubMed  Google Scholar 

  5. Albishri, H.M. and El-Hady, D.A., Hyphenation of enzyme/graphene oxide-ionic liquid/glassy carbon biosensors with anodic differential pulse stripping voltammetry for reliable determination of choline and acetylcholine in human serum, Talanta, 2019, vol. 200, p. 107.

    Article  CAS  PubMed  Google Scholar 

  6. Chauhan, N., Chawl, S., Pundir, C.S., and Jain, U., An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode, Biosens. Bioelectron., 2017, vol. 89, p. 377.

    Article  CAS  PubMed  Google Scholar 

  7. Rizzo, S., Riviere, C., Piazzi, L., Bisi, A., Gobbi, S., Bartolini, M., Andrisano, V., Morroni, F., Tarozzi, A., Monti, J.P., and Rampa, A., Benzofuran-based hybrid compounds for the inhibition of cholinesterase activity, β-Amyloid aggregation, and Aβ-Neurotoxicity, J. Med. Chem., 2008, vol. 51, p. 2883.

    Article  CAS  PubMed  Google Scholar 

  8. Bolat, E.O., Tığ, G.A., and Pekyardımc, S., Fabrication of an amperometric acetylcholine esterase-choline oxidase biosensor based on MWCNTs–Fe3O4NPs–CS nanocomposite for determination of acetylcholine, J. Electroanal. Chem., 2017, vol. 785, p. 241.

    Article  CAS  Google Scholar 

  9. Beitollahi, H., Dourandish, Z., Tajik, S., Ganjali, M.R., Norouzi, P., and Faridbod, F., Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine, J. Rare Earths, 2018, vol. 36, p. 750.

    Article  CAS  Google Scholar 

  10. Mishra, A.K., Mishra, A., and Chattopadhyay, P., A reversed-phase high performance liquid chromatographic method for determination of Epinephrine in pharmaceutical formulation, Arch. Appl. Sci. Res., 2010, vol. 2, p. 251.

    CAS  Google Scholar 

  11. Baba, A., Mannen, T., Ohdaira, Y., Shinbo, K., Kato, K., Kaneko, F., Fukuda, N., and Ushijima, H., Detection of adrenaline on poly(3-aminobenzylamine) ultrathin film by electrochemical-surface plasmon resonance spectroscopy, Langmuir, 2010, vol. 26, p. 18476.

    Article  CAS  PubMed  Google Scholar 

  12. Guo, Y.M., Yang, J.H., Wu, X., and Du, A.Q., A sensitive fluorimetric method for the determination of epinephrine, J. Fluoresc., 2005, vol. 15, p. 131.

    Article  CAS  PubMed  Google Scholar 

  13. Wei, S.L., Song, G.Q., and Lin, J.M., Separation and determination of norepinephrine, epinephrine and isoprinaline enantiomers by capillary electrophoresis in pharmaceutical formulation and human serum, J. Chromatogr. A, 2005, vol. 1098, p. 166.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, K.Y., Fu, Q., Leung, K.W., Wong, Z.C., Choi, R.C., and Tsim, K.W., The establishment of a sensitive method in determining different neurotransmitters simultaneously in rat brains by using liquid chromatography-electrospray tandem mass spectrometry, J. Chromatogr. B, 2011, vol. 879, p. 737.

    Article  CAS  Google Scholar 

  15. Qiu, H.M., Luo, C.N., Sun, M., Lu, F.G., Fan, L.L., and Li, X.J., A chemiluminescence sensor for determination of epinephrine using graphene oxide-magnetite-molecularly imprinted polymers, Carbon, 2012, vol. 50, p. 4052.

    Article  CAS  Google Scholar 

  16. Xu, G.R., Qi, X.H., Yang, F., Lee, J.J., Xu, M.L., Zhang, Y.P., and Kim, S., Double modification of electrode surface for the selective detection of epinephrine and its application to flow injection amperometric analysis, Electroanalysis, 2009, vol. 21, p. 2486.

    CAS  Google Scholar 

  17. Beitollahi, H., Taher, M.A., and Hosseini, A., Fabrication of a nanostructure-based electrochemical sensor for simultaneous determination of epinephrine and tryptophan, Measurement, 2014, vol. 51, p. 156.

    Article  Google Scholar 

  18. Mohammadi, S., Beitollahi, H., and Mohadesi, A., Electrochemical behaviour of a modified carbon nanotube paste electrode and its application for simultaneous determination of epinephrine, uric acid and folic acid, Sens. Lett., 2013, vol. 11, p. 388.

    Article  CAS  Google Scholar 

  19. Mazloum-Ardakani, M., Beitollahi, H., Amini, M.K., Mirjalili, B.B.F., and Mirkhalaf, F., Simultaneous determination of epinephrine and uric acid at a gold electrode modified by a 2-(2,3-dihydroxy phenyl)-1,3-dithiane self-assembled monolayer, J. Electroanal. Chem., 2011, vol. 651, p. 243.

    Article  CAS  Google Scholar 

  20. Shahrokhian, S. and Saberi, R.S., Electrochemical preparation of over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination, Electrochim. Acta, 2011, vol. 57, p. 132.

    Article  CAS  Google Scholar 

  21. Beitollahi, H., Dourandish, Z., Tajik, S., Ganjali, M.R., Norouzi, P., and Faridbod, F., Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine, J. Rare Earths, 2018, vol. 36, p. 750.

    Article  CAS  Google Scholar 

  22. Mohammadi, S.Z., Sarhadi, A.H., and Mosazadeh, F., Screen-printed electrode modified with magnetic core-shell nanoparticles for detection of chlorpromazine, Anal. Bioanal. Chem. Res., 2018, vol. 5, p. 363.

    CAS  Google Scholar 

  23. Mohammadi, S.Z., Beitollahi, H., and Bani Asadi, E., Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode, Environ. Monit. Assess., 2015, vol. 187, p. 122.

    Article  PubMed  CAS  Google Scholar 

  24. Mohammadi, S.Z., Beitollahi, H., and Fadaeian, H., Voltammetric determination of isoproterenol using a graphene oxide nano sheets paste electrode, J. Anal. Chem., 2018, vol. 73, p. 705.

    Article  CAS  Google Scholar 

  25. Kumary Vidyadharan, A., Jayan, D., and Mary Nancy, T.E., Ni0.1Co0.9Fe2O4-based electrochemical sensor for the detection of paracetamol, J. Solid State Electrochem., 2014, vol. 18, p. 2513.

    Article  CAS  Google Scholar 

  26. Mohammadi, S.Z., Beitollahi, H., and Afzali, H., A novel electrochemical nanosensor for voltammetric determination of isoproterenol, Anal. Bioanal. Electrochem., 2016, vol. 8, p. 977.

    CAS  Google Scholar 

  27. Shahnavaz, Z., Lorestani, F., Meng, W.P., and Alias, Y., Core–shell–CuFe2O4/PPy nanocomposite enzyme-free sensor for detection of glucose, J. Solid State Electrochem., 2015, vol. 19, p. 1223.

    Article  CAS  Google Scholar 

  28. Mohammadi, S.Z., Beitollahi, H., Jasemi, M., and Akbari, A., Nanomolar determination of methyldopa in the presence of large amounts of hydrochlorothiazide using a carbon paste electrode modified with graphene oxide nanosheets and 3-(4′-amino-3′-hydroxy-biphenyl-4-yl)acrylic acid, Electroanalysis, 2015, vol. 27, p. 2421.

    Article  CAS  Google Scholar 

  29. Jaime-González, J., Mazario, E., Menendez, N., Sanchez-Marcos, J., Muñoz-Bonilla, A., and Herrasti, P., Comparison of ferrite nanoparticles obtained electrochemically for catalytical reduction of hydrogen peroxide, J. Solid State Electrochem., 2016, vol. 20, p. 1191.

    Article  CAS  Google Scholar 

  30. Mohammadi, S.Z., Beitollahi, H., Allahabadi, H., and Rohani, T., Disposable electrochemical sensor based on modified screen-printed electrode for sensitive cabergoline quantification, J. Electroanal. Chem., 2019, vol. 847, p. 113223.

    Article  CAS  Google Scholar 

  31. Mohammadi, S.Z., Beitollahi, H., Dehghan, Z., and Hosseinzadeh, R., Electrochemical determination of ascorbic acid, uric acid and folic acid using carbon paste electrode modified with novel synthesized ferrocene derivative and core–shell magnetic nanoparticles in aqueous media, Appl. Organometal. Chem., 2018, vol. 32, p. 4551.

    Article  CAS  Google Scholar 

  32. Mohammadi, S.Z., Beitollahi, H., and Mousavi, M., Determination of hydroxylamine using a carbon paste electrode modified with graphene oxide nano sheets, Russ. J. Electrochem., 2017, vol. 53, p. 374.

    Article  CAS  Google Scholar 

  33. Beitollahi, H., Mohammadi, S.Z., Koroukinejhad, M., and Hosseinzadeh, R., Voltammetric determination of isoproterenol using a nanostructure based electrochemical sensor, Anal. Bioanal. Electrochem., 2015, vol. 7, p. 777.

    CAS  Google Scholar 

  34. Arduini, F., Zanardi, C., Cinti, S., Terzi, F., Moscone, D., Palleschi, G., and Seeber, R., Effective electrochemical sensor based on screen-printed electrodes modified with a carbon black-Au nanoparticles composite, Sens. Actuators B, 2015, vol. 212, p. 536.

    Article  CAS  Google Scholar 

  35. Foster, C.W., Metters, J.P., Kampouris, D.K., and Banks, C.E., Ultraflexible screen-printed graphitic electroanalytical sensing platforms, Electroanalysis, 2014, vol. 26, p. 262.

    Article  CAS  Google Scholar 

  36. Chan, K.F., Lim, H.N., Shams, N., Jayabal, S., Pandikumar, A., and Huang, N.M., Fabrication of graphene/gold-modified screen-printed electrode for detection of carcinoembryonic antigen, Mater. Sci. Eng. C, 2016, vol. 58, p. 666.

    Article  CAS  Google Scholar 

  37. Beitollahi, H., Mohammadi, S.Z., and Tajik, S., Electrochemical behavior of morphine at the surface of magnetic core shell manganese Ferrite nanoparticles modified screen printed electrode and its determination in real samples, Int. J. Nano Dimens., 2019, vol. 10, p. 304.

    CAS  Google Scholar 

  38. Kang, I., Shin, W.S., Manivannan, S., Seo, Y., and Kim, K., An electrochemical sensor for hydrazine based on in situ grown cobalt hexacyanoferrate nanostructured film, J. Electrochem. Sci. Technol., 2016, vol. 7, p. 277.

    Article  CAS  Google Scholar 

  39. Beitollahi, H., Nekooei, S., and Torkzadeh Mahani, M., Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer modified ionic liquid carbon paste electrode, Talanta, 2018, vol. 188, p. 701.

    Article  CAS  PubMed  Google Scholar 

  40. Norouzi, B., Malekan, A., and Moradian, M., Nickel-zeolite modified carbon paste electrode as electrochemical sensor for hydrogen peroxide, Russ. J. Electrochem., 2016, vol. 52, p. 330.

    Article  CAS  Google Scholar 

  41. Mohammadi, S.Z., Beitollahi, H., Khodaparast, B., and Hosseinzadeh, R., Electrochemical determination of epinephrine, uric acid and folic acid using a carbon paste electrode modified with novel ferrocene derivative and core-shell magnetic nanoparticles, Res. Chem. Intermed., 2019, vol. 45, p. 1117.

    Article  CAS  Google Scholar 

  42. Chatterjee, K., Sarkar, S., Rao, K.J., and Paria, S., Core/shell nanoparticles in biomedical applications, Adv. Colloid Interface Sci., 2014, vol. 209, p. 8.

    Article  CAS  PubMed  Google Scholar 

  43. Patra, S., Roy, E., Madhuri, R., and Sharma, P.K., An imprinted Ag@CdS core shell nanoparticle based optical-electrochemical dual probe for trace level recognition of ferritin, Biosens. Bioelectron., 2015, vol. 63, p. 301.

    Article  CAS  PubMed  Google Scholar 

  44. Mohammadi, S.Z. and Seyedi, A., Preconcentration of cadmium and copper ions on magnetic core-shell nanoparticles for determination by flame atomic absorption, Toxicol. Environ. Chem., 2016, vol. 98, p. 705.

    CAS  Google Scholar 

  45. Yuan, Z.Y., Liu, S.Q., Chen, T.H., Wang, J.Z., and Li, H.X., Synthesis of iron-containing MCM-41, J. Chem. Soc. Chem. Commun., 1995, vol. 9, p. 973.

    Article  Google Scholar 

  46. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.

    Google Scholar 

  47. Tavana, T., Khalilzadeh, M.A., Karimi-Maleh, H., Ensafi, A.A., Beitollahi, H., and Zareyee, D., Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode, J. Mol. Liq., 2012, vol. 168, p. 69.

    Article  CAS  Google Scholar 

  48. Mazloum-Ardakani, M., Beitollahi, H., Sheikh Mohseni, M.A., Benvidi, A., Naeimi, H., Nejati-Barzoki, M., and Taghavinia, N., Simultaneous determination of epinephrine and acetaminophen concentrations using a novel carbon paste electrode prepared with 2,2′-[1,2 butanediylbis(nitriloethylidyne)]-bis-hydroquinone and TiO2 nanoparticles, Colloids Surf. B, 2010, vol. 76, p. 82.

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support provided for this project (no. 97000083) by the Bam University of Medical Sciences, Bam, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farideh Mosazadeh.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed Zia Mohammadi, Mosazadeh, F., Beitollah, H. et al. A Novel Electrochemical Sensor for Epinephrine in the Presence of Acetylcholine Based on Modified Screen-Printed Electrode. Russ J Electrochem 58, 248–257 (2022). https://doi.org/10.1134/S1023193522040097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522040097

Keywords:

Navigation