Skip to main content
Log in

A High-Performance Self-Reinforced PEO-Based Blend Solid Electrolyte Membrane for Solid-State Lithium Ion Batteries

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The application of lithium-ion batteries is increasing, but the safety problems of traditional liquid lithium-ion batteries have not been fully resolved. Design and manufacture of solid electrolytes can thoroughly solve the problems. A self-reinforced poly(ethylene oxide) based blend solid electrolyte (PEO-BSPE) membrane was designed and prepared successfully by in-situ polymerization of ethoxylated trimethylolpropane triacrylate (ETPTA) in PEO electrolyte matrix under UV light to form a high-strength three-dimensional network structure. XRD and FESEM analyses proved that PEO-BSPE membranes were amorphous, smooth and flexible. The tensile strength of PEO-BSPE was 20 times higher than that of PEO-SPE film. PEO-BSPE also had good safety and low glass transition temperature. The ionic conductivity of PEO-BSPE at 55°C increased to 1.3 × 10–4 S cm–1. The electrochemical stability window of PEO-BSPE was 5.6 V. The solid-state battery was assembled with PEO-BSPE. The solid-state battery (LiFePO4/PEO-BSPE/Li) had good cycle stability, low interface impedance (189 Ω cm–2), high coulombic efficiency (>98%), high average specific discharge capacity (>135 mA h g–1 at 0.1 C) and excellent C-rate performance at 55°C. Hence the PEO-BSPE membrane is a very hopeful candidate for applying in all-solid-state lithium battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Zheng, F., Kotobuki, M., and Song, S., Review on solid electrolytes for all-solid-state lithium-ion batteries, J. Power Sources, 2018, vol. 389, p. 198.

    Article  CAS  Google Scholar 

  2. Xue, Z., He, D., and Xie, X., Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater Chem. A, 2015, vol. 3, no. 38, p. 19218.

    Article  CAS  Google Scholar 

  3. Koduru, H.K., Scarpelli, F., and Marinov, Y.G., Characterization of PEO/PVP/GO nanocomposite solid polymer electrolyte membranes: microstructural, thermo-mechanical and conductivity properties, Ionics, 2018, vol. 24, p. 3459.

    Article  CAS  Google Scholar 

  4. Stephan, A.M., Natarajan, A.L., and Murugan, R., Sisal-derived activated carbons for cost-effective lithium–sulfur batteries, RSC Adv., 2016, vol. 6, p. 13772.

    Article  CAS  Google Scholar 

  5. Nair, J.R., Bella, F., Angulakshmi, N., Stephan, A.M., and Gerbaldi, C., Nanocellulose-laden composite polymer electrolytes for high performing lithium–sulphur batteries, Energy Storage Mater., 2016, vol. 3, p. 69.

    Article  Google Scholar 

  6. Cecil, K.K., Hector, F.G., and Steven, L.S., End-to-end and side-by-side alignment of short octahedral molecular sieve (OMS-2) nanorods into long microyarn superarchitectures and highly flexible membranes, Nano-Struct. Nano-Objects, 2018, vol. 14, p. 49.

    Article  CAS  Google Scholar 

  7. Talam, E.K., Laura, A., Peter, K., John, M., Cecil, K.K., and Steven, L.S., Highly microporous Parinari Curatellifolia carbon nanomaterials for supercapacitors, Nano-Struct. Nano-Objects, 2020, vol. 22, p. 100445.

    Article  CAS  Google Scholar 

  8. Kranz, S., Kranz, T., and Jaegermann, A.G., Is the solid electrolyte interphase in lithium-ion batteries really a solid electrolyte? Transport experiments on lithium bis(oxalato)borate-based model interphases, J. Power Sources, 2019, vol. 418, p. 138.

    Article  CAS  Google Scholar 

  9. Henschel, J., Peschel, C., and Florian, G., Reaction product analysis of the most active “inactive” material in lithium-ion batteries-the electrolyte. II: battery operation and additive impact, Chem. Mater., 2019, vol. 31, no. 24, p. 9977.

    Article  CAS  Google Scholar 

  10. Stenzel, Y.P., Boerner, M., Preibisch, Y., et al., Thermal profiling of lithium ion battery electrodes at different states of charge and aging conditions, J. Power Sources, 2019, vol. 433, p. 226709-1.

    Article  CAS  Google Scholar 

  11. Anh, L.M. and Kim, D., Solid electrolyte membrane prepared from poly(arylene ether sulfone)-g-poly(ethylene glycol) for lithium secondary battery, ACS Appl. Energy Mater., 2019, vol. 2, p. 2585.

    Article  CAS  Google Scholar 

  12. Maheshwaran, C., Kanchan, D.K., and Gohel, K., Effect of Mg(CF3SO3)2 concentration on structural and electrochemical properties of ionic liquid incorporated polymer electrolyte membranes, J. Solid State Electron., 2020, vol. 24, p. 655.

    Article  CAS  Google Scholar 

  13. Gohel, K. and Kanchan, D.K., Ionic conductivity and relaxation studies in PVDF-HFP:PMMA-based gel polymer blend electrolyte with LiClO4 salt, J. Adv. Dielectr., 2018, vol. 08, p. 1850005.

    Article  CAS  Google Scholar 

  14. Li, Z., Sha, W.X., and Guo, X., Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability, ACS Appl. Mater. Int., 2019, vol. 11, no. 30, p. 26920.

    Article  CAS  Google Scholar 

  15. Pantyukhina, M.I., Plaksin, S.V., Saetova, N.S., and Raskovalov, A.A., New solid electrolyte Li8 – xZr1 – xTaxO6 (x = 0–0.5) for lithium power sources, Russ. J. Electrochem., 2019, vol. 55, no. 12, p. 1269.

    Article  CAS  Google Scholar 

  16. Bhute, M.V. and Kondawar, S.B., Electrospun poly(vinylidene fluoride)/cellulose acetate/AgTiO2 nanofibers polymer electrolyte membrane for lithium ion battery, Solid State Ionics, 2019, vol. 333, p. 38.

    Article  CAS  Google Scholar 

  17. Wright, P., Recent trends in polymer electrolytes based on poly(ethylene oxide), J. Macromol. Sci. A, 1989, vol. 26, p. 519.

    Article  Google Scholar 

  18. Volel, M. and Armand, M., Influence of sample history on the morphology and transport properties of PEO-lithium salt complexes, Macromolecules, 2004, vol. 37, no. 22, p. 8373.

    Article  CAS  Google Scholar 

  19. Yi, S., Xu, T., and Li, L., Fast ion conductor modified double-polymer (PVDF and PEO) matrix electrolyte for solid lithium-ion batteries, Solid State Ionics, 2020, vol. 355, p. 115419.

    Article  CAS  Google Scholar 

  20. Pritam Arya, A. and Sharma, A.L., Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis, Ionics, 2020, vol. 26, p. 745.

    Article  CAS  Google Scholar 

  21. Lee, J., Howell, T., and Rottmayer, M., Free-standing PEO/LiTFSI/LAGP composite electrolytemembranes for applications to flexible solid-state lithium-based batteries, J. Electrochem. Soc., 2019, vol. 166, p. A416.

    Article  CAS  Google Scholar 

  22. Mathew, D.E., Gopi, S., and Kathiresan, M., Influence of MOF ligands on the electrochemical and interfacial properties of PEO-based electrolytes for all-solid-state lithium batteries, Electrochim. Acta, 2019, vol. 319, p. 189.

    Article  CAS  Google Scholar 

  23. Suriyakumar, S., Madasamy, K., Natarajan, A.L., Murugavel, K., Nahm, K.S., Walkowiak, M., Wasiński, K., PóRolniczak, P., and Stephan, A.M., Charge–discharge studies of all-solid-state Li/LiFePO4 cells with PEO-based composite electrolytes encompassing metal organic frameworks, RSC Adv., 2016, vol. 6, p. 97180.

    Article  CAS  Google Scholar 

  24. Sundaramahalingam, K., Muthuvinayagam, M., and Nallamuthu, N., AC impedance analysis of lithium ion based PEO:PVP solid polymer blend electrolytes, Polym. Sci. Ser. A, 2019, vol. 61, p. 565.

    Article  CAS  Google Scholar 

  25. Wang, S., Zeng, Q., and Wang, A., Constructing stable ordered ion channels for a solid electrolyte membrane with high ionic conductivity by combining the advantages of liquid crystal and ionic liquid, J. Mater Chem. A, 2019, vol. 7, p. 1069.

    Article  CAS  Google Scholar 

  26. Koizumi, Y., Mori, D., and Taminato, S., Lithium-stable NASICON-type lithium-ion conducting solid electrolyte film coated with a polymer electrolyte, Solid State Ionics, 2019, vol. 337, p. 101.

    Article  CAS  Google Scholar 

  27. Patla, S.K., Mukhopadhyay, M., and Ray, R., Ion specificity towards structure-property correlation of poly (ethylene oxide) [PEO]-NH4I and PEO-KBr composite solid polymer electrolyte, Ionics, 2019, vol. 25, p. 627.

    Article  CAS  Google Scholar 

  28. George, S.C., Thomas, S., and Ninan, K.N., Molecular transport of aromatic hydrocarbons through crosslinked styrene-butadiene rubber membranes, Polymer, 1996, vol. 37, p. 5839.

    Article  CAS  Google Scholar 

  29. Mathew, V.S., Sinturel, C., George, S.C., and Thomas, S., Epoxy resin/liquid natural rubber system: secondary phase separation and its impact on mechanical properties, J. Mater. Sci., 2010, vol. 45, p. 1769.

    Article  CAS  Google Scholar 

  30. Fan, W., Li, N., and Zhang, X., A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries, Adv. Sci., 2018, vol. 5, p. 18005599.

    Google Scholar 

  31. Evans, J., Vincent, C.A., and Bruce, P.G., Electrochemical measurement of transference numbers in polymer electrolytes, Polymer, 1987, vol. 28, p. 2324.

    Article  CAS  Google Scholar 

  32. Li, C., Yue, H., Wang, Q., Li, J., Zhang, J., Dong, H., Yin, Y., and Yang, S., A novel composite solid polymer electrolyte based on copolymer P(LA-co-TMC) for all-solid-state lithium ionic batteries, Solid State Ionics, 2018, vol. 321, pp. 8–14.

    Article  CAS  Google Scholar 

  33. Ilhwan, K., Bong, K., and Seunghoon, N., Cross-linked poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-co-HFP) gel polymer electrolyte for flexible Li-ion battery integrated with organic light emitting diode (OLED), Materials, 2018, vol. 11, p. 543.

    Article  CAS  Google Scholar 

  34. Kim, S., Choi, K., and Cho, S., A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries, J. Mater Chem. A, 2014, vol. 2, no. 28, p. 10854.

    Article  CAS  Google Scholar 

  35. Turković, A., Radmanović, K., and Pucić, I., Impedance, IR, Raman spectroscopy and differential scanning calorimetry of nanocomposite (PEO)8ZnCl2 polyelectrolyte, Strojarstvo, 2002, vol. 44, p. 219.

    Google Scholar 

  36. Chen, B., Huang, Z., and Chen, X., A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery, Electrochim. Acta, 2016, vol. 210, p. 905.

    Article  CAS  Google Scholar 

  37. Rey, I., Lassègues, J.C., and Grondin, J., Infrared and Raman study of the PEO-LiTFSI polymer electrolyte, Electrochim. Acta, 1998, vol. 43, p. 1505.

    Article  CAS  Google Scholar 

  38. Pritam, A.A. and Sharma, A.L., Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis, Ionics, 2020, vol. 26, p. 745.

    Article  CAS  Google Scholar 

  39. Wu, X., Xin, S., and Seo, H., Enhanced Li+ conductivity in PEO-LiBOB polymer electrolytes by using succinonitrile as a plasticizer, Solid State Ionics, 2011, vol. 18, p. 1.

    Article  CAS  Google Scholar 

  40. Polu, A.R., Rhee, H., and Kim, D.K., New solid polymer electrolytes (PEO20–LiTDI–SN) for lithium batteries: structural, thermal and ionic conductivity studies, J. Mater. Sci.-Mater. Electron., 2015, vol. 26, p. 8548.

    Article  CAS  Google Scholar 

  41. Takahashi Masaya, Tobishima Shin-ichi, Takei Koji, and Sakurai Yoji, Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries, Solid State Ionics, 2002, vol. 148, p. 283.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Key Project of Science and Technology of Henan Educational Department (nos. 21A480003, 20B430009), the Program for Science and Technology Innovation Talents in Universities of Henan Province (no. 20HASTIT010), the Key Project Science and Technology of Xinxiang City (no. GG2021018), Henan Institute of Technology Doctoral Research Startup Fund (KQ1902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengbin Li.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chengbin Li, Yue, H., Wang, Q. et al. A High-Performance Self-Reinforced PEO-Based Blend Solid Electrolyte Membrane for Solid-State Lithium Ion Batteries. Russ J Electrochem 58, 271–283 (2022). https://doi.org/10.1134/S1023193522040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522040085

Keywords:

Navigation