Skip to main content
Log in

Codeposition of Zinc with Manganese from Different Gluconate Baths

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Codeposition of zinc and manganese from slightly acidic gluconate solutions with various anions (chloride and/or sulfate) showed that independently on the bath speciation manganese ions were a key factor inhibiting electroreduction of zinc ions. It resulted in two potential ranges of the electrodeposition behavior. Morphology and composition of the electrodeposits was not affected by the type of anions in the electrolyte, but was seriously dependent on a deposition potential. Nucleation mode, surface wettability and corrosion properties of the deposits were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Boshkov, N., Galvanic Zn–Mn alloys—electrodeposition, phase composition, corrosion behaviour and protective ability, Surf. Coat Technol., 2003, vol. 172, no. 11, p. 217.

    Article  CAS  Google Scholar 

  2. Boshkov, N., Petrov, K., Vitkova, S., and Raichevski, G., Corrosion behavior and protective ability of multilayer galvanic coatings of Zn and Zn–Mn alloys in sulfate containing medium, Surf. Coat. Technol., 2006, vol. 194, p. 276.

    Article  Google Scholar 

  3. Bučko, M., Rogan, J., Stevanović, S.I., Perić-Grujić, A., and Bajat, J.B., Initial corrosion protection of Zn–Mn alloys electrodeposited from alkaline solution, Corr. Sci., 2011, vol. 53, p. 2861.

    Article  Google Scholar 

  4. Touazi, S., Bučko, M., Makhloufi, L., Legat, A., and Bajat, J.B., The electrochemical behavior of Zn–Mn alloy coating in carbonated concrete solution, Surf. Rev. Lett., 2016, vol. 23, no. 4, p. 1650030.

    Article  CAS  Google Scholar 

  5. Ganesan, S., Prabhu, G., and Popov, B. N., Electrodeposition and characterization of Zn–Mn coatings for corrosion protection, Surf. Coat. Technol., 2014, vol. 238, p. 143.

    Article  CAS  Google Scholar 

  6. Chatterjee, B., Electrodeposition of zinc alloys, Jahrb. Oberfl. Techn., 2006, vol. 62, p. 76.

    CAS  Google Scholar 

  7. Bozzini, B., Accardi, V., Cavallotti, P.L., and Pavan, F., Electrodeposition and plastic behavior of low-manganese zinc–manganese alloy coatings for automotive applications, Met. Finish., 1999, vol. 97, no. 5, p. 33.

    Article  CAS  Google Scholar 

  8. Bozzini, B., Griskonis, E., Fanigliulio, A., and Sulcius, A., Electrodeposition of Zn–Mn alloys in the presence of thiocarbamide, Surf. Coat. Technol., 2002, vol. 154, p. 294.

    Article  CAS  Google Scholar 

  9. Diaz-Arista, P., Ortiz, Z.I., Ruiz, H., Ortega, R., Meas, Y., and Trejo, G., Electrodeposition and characterization of Zn–Mn alloy coatings obtained from a chloride-based acidic bath containing ammonium thiocyanate as an additive, Surf. Coat. Technol., 2009, vol. 203, p. 1167.

    Article  CAS  Google Scholar 

  10. Fashu, S., Gu, C.D., Zhang, J.L., Zheng, H., Wang, X.L., and Tu, J.P., Electrodeposition, morphology, composition and corrosion performance of Zn–Mn coatings from a deep eutectic solvent, J. Mat. Eng. Perform., 2015, vol. 24, p. 434.

    Article  CAS  Google Scholar 

  11. Bučko, M., Rogan, J., Stevanović, S.I., Stanković, S., and Bajat, J.B., The influence of anion type in electrolyte on the properties of electrodeposited Zn–Mn alloy coatings, Surf. Coat. Technol., 2013, vol. 228, p. 221.

    Article  Google Scholar 

  12. Rafiee, A., Raeissi, K., and Golozar, M.A., Characterization and corrosion resistance of Zn–Mn coatings electrodeposited from acidic chloride bath, Trans. Inst. Met. Finish., 2014, vol. 92, no. 2, p. 115.

    Article  CAS  Google Scholar 

  13. Tsuchiya, Y., Hashimoto, S., Ishibashi, Y., Urakawa, T., Sagiyama, M., and Fukuda, Y., Structure of electrodeposited Zn–Mn alloy coatings, ISIJ Int., 2000, vol. 40, p. 1024.

    Article  CAS  Google Scholar 

  14. Wilcox, D.G. and Petersen, B., Zinc–manganese alloy electrodeposition, Trans. Inst. Met. Finish., 1996, vol. 74, no. 4, p. 115.

    Article  CAS  Google Scholar 

  15. Loukil, N. and Feki, M., Zn–Mn electrodeposition: a literature review, J. Electrochem. Soc., 2000, vol. 167, p. 0022503.

    Article  Google Scholar 

  16. Zhang, Q.B. and Hua, Y., Effect of Mn2+ ions on the electrodeposition of zinc from acidic sulphate solutions, Hydrometallurgy, 2009, vol. 99, p. 249.

    Article  CAS  Google Scholar 

  17. Savall, C., Reberee, C., Sylla, D., Gadouleau, M., Refait, P., and Creus, J., Morphological and structural characterization of electrodeposited Zn–Mn alloys from acidic chloride bath, Mat. Sci. Eng. A, 2006, vol. 430, p. 165.

    Article  Google Scholar 

  18. Loukil, N. and Feki, M., Zn–Mn alloy coatings from acidic chloride bath: effect of deposition conditions on the Zn–Mn electrodeposition-morphological and structural characterization, Appl. Surf. Sci., 2017, vol. 410, p. 574.

    Article  CAS  Google Scholar 

  19. Sylla, D., Creus, J., Savall, C., Roggy, O., Gadouleau, M., and Refait, P., Electrodeposition of Zn–Mn alloys on steel from acidic Zn–Mn chloride solutions, Thin Solid Films, 2003, vol. 424, p. 171.

    Article  CAS  Google Scholar 

  20. Claudel, F., Stein, N., Allain, N., Tidu, A., Hajczak, N., Lallement, R., and Close, D., Pulse electrodeposition and characterization of Zn–Mn coatings deposited from additive free chloride electrolytes, J. Appl. Electrochem., 2019, vol. 49, no. 4, p. 399.

    Article  CAS  Google Scholar 

  21. Bozzini, B., Pavant, E., Bollini, G., and Cavallotti, P.L., Zn–Mn alloy electrodeposition on steel, Trans. Inst. Met. Finish., 1997, vol. 75, no. 7, p. 175.

    Article  CAS  Google Scholar 

  22. Danilov, F.I., Gerasimov, V.V., and Sukhomlin, D.A., Pulsed electrodeposition of zinc–manganese alloys, Russ. J. Electrochem., 2001, vol. 37, no 3, p. 308.

    Article  CAS  Google Scholar 

  23. Müller, C., Sarret, M., and Andreu, T., Electrodeposition of Zn–Mn alloys at low current densities, J. Electrochem. Soc., 2002, vol. 149, no. 11, p. C600.

    Article  Google Scholar 

  24. Müller, C., Sarret, M., and Andreu, T., Electrodeposition of Zn–Mn alloys using pulse plating, J. Electrochem. Soc., 2003, vol. 150, no. 11, p. C772.

    Article  Google Scholar 

  25. Sylla, D., Savall, C., Gadouleau, M., Reberee, C., Creus, J., and Refait, P., Electrodeposition of Zn–Mn alloys on steel using an alkaline pyrophosphate-based electrolytic bath, Surf. Coat. Technol., 2005, vol. 200, p. 2137.

    Article  CAS  Google Scholar 

  26. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., and Lallement, R., Electrodeposition, microstructural characterization and anticorrosive properties of Zn–Mn alloy coatings from acidic chloride electrolyte containing 4-hydroxybenzaldehyde and ammonium thiocyanate, Surf. Coat. Technol., 2016, vol. 298, p. 73.

    Article  CAS  Google Scholar 

  27. Loukil, N. and Feki, M., Synergistic effect of triton X100 and 3-hydroxybenzaldehyde on Zn–Mn electrodeposition from acidic chloride bath, J. Alloys Compd., 2017, vol. 719, p. 420.

    Article  CAS  Google Scholar 

  28. Bučko, M., Lačnijeva, U., and Bajat, J., The influence of substituted aromatic aldehydes on the electrodeposition of Zn–Mn alloy, J. Serb. Chem. Soc., 2013, vol. 78, no. 10, p. 1569.

    Article  Google Scholar 

  29. Rubin, W., de Oliveira, E.M., and Carlos, I.A., Study of the influence of boric-sorbitol complex on Zn–Mn electrodeposition and on the morphology, chemical composition and structure of the deposits, J. Appl. Electrochem., 2012, vol. 42, p. 11.

    Article  CAS  Google Scholar 

  30. Wykpis, K., Bierska-Piech, B., and Kubisztal, J., Electrodeposition of Zn–Mn coatings from a sulphate bath in the presence of complexing additives, Surf. Interface Anal., 2014, vol. 46, no. 10-11, p. 740.

    Article  CAS  Google Scholar 

  31. Chen, P.-Y. and Hussey, C.L., The electrodeposition of Mn and Zn–Mn alloys from the room-temperature tri-1-butylmethylammonium bis((trifluoromethane)sulfonyl)imide ionic liquid, Electrochim. Acta, 2007, vol. 52, p. 1857.

    Article  CAS  Google Scholar 

  32. Bučko, M., Rogan, J., Jokić, B., Mitrić, M., Lačnjevac, U., and Bajat, J.B., Electrodeposition of Zn–Mn alloys at high current densities from chloride electrolyte, J. Solid State Electrochem., 2013, vol. 17, p. 1409.

    Article  Google Scholar 

  33. Vinokurov, E.G., Kandyrin, K.L., and Bondar, V.V., Modeling of the solution composition and a study of the electrodeposition of the Cu–Zn alloy, Russ. J. Appl. Chem., 2010, vol. 83, no. 4, p. 659.

    Article  CAS  Google Scholar 

  34. Vinokurov, E.G., Prognostication of the composition of a solution for electrodeposition of Sn–Co alloy and determination of its color characteristics, Russ. J. Appl. Chem., 2010, vol. 83, no. 2, p. 258.

    Article  CAS  Google Scholar 

  35. Sziráki, L., Kuzmann, E., Lak, G.B., El-Sharif, M., Chisholm, C.U., Stichleutner, S., Havancsák, K., Zih-Perényi, K., Homonnay, Z., and Vértes, A., Study of electrodeposition of amorphous Sn–Ni–Fe ternary alloys from a gluconate based electrolyte, Surf. Coat. Technol., 2012, vol. 211, p. 184.

    Article  Google Scholar 

  36. Rudnik, E., Chat, K., Włoch, G., and Osuch, P., Influence of chloride and sulfate ions on electrodeposition, wettability and corrosion resistance of zinc coatings produced from gluconate solutions, J. Electrochem. Soc., 2019, vol. 166, no. 8, p. D323.

    Article  Google Scholar 

  37. Rudnik, E., Effect of gluconate ions on electroreduction phenomena during manganese deposition on glassy carbon in acidic chloride and sulfate solutions. J. Electroanal. Chem., 2015, vol. 741, p. 20.

    Article  CAS  Google Scholar 

  38. Lu, J., Dreisinger, D., and Glück, T., Manganese electrodeposition—a literature review, Hydrometallurgy, 2014, vol. 141, p. 105.

    Article  CAS  Google Scholar 

  39. Gong, J. and Zangari, G., Electrodeposition and characterization of manganese coatings, J. Electrochem. Soc., 2002, vol. 149, no. 4, p. C209.

    Article  CAS  Google Scholar 

  40. Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Leuz, A.-K., Sjöberg, S., and Wanner, H., Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: the Zn2+ + OH, Cl, \({\text{CO}}_{3}^{{2 - }}\), \({\text{SO}}_{4}^{{2 - }}\), and \({\text{PO}}_{4}^{{3 - }}\) systems (IUPAC Technical Report), Pure Appl. Chem., 2013, vol. 85, no. 12, p. 2249.

    Article  CAS  Google Scholar 

  41. The UPAC Stability Constants Data Base, Academic Software and UPAC, 1992–2000.

  42. Felmy, A.R., Mason, M.J., and Qafoku, O., Thermodynamic Data Development for Modeling Sr/TRU Separations: Sr-EDTA, Sr-HEDTA and Mn-Gluconate Complexation, Richland: Batelle – Pacific Northwest Division, 2003.

    Google Scholar 

  43. Kochkodan, V., Darwish, N.B., and Hilal, N., The chemistry of boron in water, in Boron Separation Processes, Kabay N., Bryjak M., and Hilal N., Eds., Amsterdam: Elsevier, 2015.

    Google Scholar 

  44. Sposito, G., Chemical Equilibria and Kinetics in Soils, New York: Oxford Univ. Press, 1994.

    Google Scholar 

  45. Bousher, A., Review: unidentate complexes involving borate, J. Coord. Chem., 1995, vol. 34, no. 1, p. 1.

    Article  CAS  Google Scholar 

  46. Bodini, M.E., Willis, L.A., Riechel, T.L., and Sa-wyer, D.T., Electrochemical and spectroscopic studies of Mn(II), Mn(III) and Mn(IV) gluconate complexes. 1. Formulas and oxidation–reduction stoichiometry, Inorg. Chem., 1976, vol. 15, no. 7, p. 1538.

    Article  CAS  Google Scholar 

  47. Wekesa, M., Uddin, M.J., and Sobhi, H.F., An insight into Mn(II) chemistry: a study of reaction kinetics under alkaline conditions, Int. J. Chem. Res., 2011, vol. 2, no. 4, p. 34.

    Google Scholar 

  48. Prakoso, T., Widodo, A., Indarto, A., Mariyana, R., Arif, A.F., Adhi, T.P., and Soerawidjaja, T.H., Manganese gluconate, a greener and more degradation resistant agent for H2S oxidation using liquid redox sulfur recovery process, Heliyon, 2020, vol. 6, p. e03358.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rudnik, E., Wojnicki, M., and Włoch, G., Effect of gluconate addition on the electrodeposition of nickel from acidic baths, Surf. Coat. Technol., 2012, vol. 207, p. 375.

    Article  CAS  Google Scholar 

  50. Rudnik, E. and Dashbold, N., Effect of Cl and \({\text{SO}}_{4}^{{2 - }}\) ions on electrodeposition of cobalt from acidic gluconate solutions, Russ. J. Electrochem., 2019, vol. 55, no. 12, p. 1305.

    Article  CAS  Google Scholar 

  51. Rudnik, E., Effect of anions on the electrodeposition of tin from acidic gluconate baths Ionics, 2013, vol. 19, no. 7, p. 1047.

    Article  CAS  Google Scholar 

  52. Greef, R., Peat, R., Peter, L. M., Pletcher, D., and Robinson, J., Instrumental Methods in Electrochemistry, Chichester: Ellis Horwood Ltd., 1985.

    Google Scholar 

  53. Rudnik, E. and Chat, K., Comparative studies of the electroreduction of zinc ions from gluconate solutions, Metall. Found. Eng., 2019, vol. 45, no. 1, p. 19.

    CAS  Google Scholar 

  54. Brown, P.L. and Ekberg, C., Hydrolysis of Metal Ions, Weinheim: Wiley-VCH, 2016.

    Book  Google Scholar 

  55. Gong, J., Zana, I., and Zangari, G., Electrochemical synthesis of crystalline and amorphous manganese coatings, J. Mater. Sci. Lett., 2001, vol. 20, p. 1921.

    Article  CAS  Google Scholar 

  56. Diaz-Arista, P., Antaño-López, R., Meas, Y., Ortega, R., Chainet, E., Ozil, P., and Trejo, G., EQCM study of the electrodeposition of manganese in the presence of ammonium thiocyanate in chloride-based acidic solution, Electrochim. Acta, 2006, vol. 51, p. 4393.

    Article  CAS  Google Scholar 

  57. Rudnik, E. and Włoch, G., The influence of sodium gluconate on nickel and manganese codeposition from acidic chloride-sulfate baths, Ionics, 2014, vol. 20, no. 12, p. 1747.

    Article  CAS  Google Scholar 

  58. Yan, H., Dawnes, J., Boden, P.J., and Harris, S.J., A model for nanolaminated growth patterns in Zn and Zn–Co electrodeposits, J. Electrochem. Soc., 1996, vol. 143, no. 5, p. 1577.

    Article  CAS  Google Scholar 

  59. Sharifker, B.R. and Hills, G., Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 1983, vol. 28, no. 7, p. 879.

    Article  Google Scholar 

  60. Sluyters-Rehbach, M., Wijenberg, J.H.O.J., Bosco, E., and Sluyters, J.H., The theory of chronoamperometry for the investigation of electrocrystallization, J. Electroanal. Chem., 1987, vol. 236, p. 1.

    Article  CAS  Google Scholar 

  61. Boudinar, S., Benbrahim, N., Benfedda, B., Kadri, A., Chainet, E., and Hamadou, L., Electrodeposition of heterogeneous Mn–Bi thin films from a sulfate–nitrate bath: nucleation mechanism and morphology, J. Electrochem. Soc., 2014, vol. 161, no. 5, p. D227.

    Article  CAS  Google Scholar 

  62. Rafiee, A., Raeisi, K., and Golozar, M.A., Effect of pH on nucleation mechanism od Zn–Mn coatings electrodeposited at different deposition potential, Surf. Eng., 2015, vol. 31, no. 6, p. 439.

    Article  CAS  Google Scholar 

  63. Survila, A., Electrochemistry of Metal Complexes, Weinheim: Wiley-VCH, 2015.

    Book  Google Scholar 

  64. Winand, R., Electrocrystallization—theory and applications, Hydrometallurgy, 1992, vol. 92, nos. 1–3, p. 567.

    Article  Google Scholar 

  65. Vazirinasab, E., Jafari, R., and Momen, G., Application of superhydrophobic coatings as a corrosion barrier: a review, Surf. Coat. Technol., 2018, vol. 341, p. 40.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Science Centre of Poland under a project no. 2018/31/N/ST8/00908.

Author information

Authors and Affiliations

Authors

Contributions

K. Chat-Wilk performed experimental work and participated in the results analysis E. Rudnik proposed an idea of the work, analysed the results, calculated the equilibrium diagrams and prepared the manuscript; G. Włoch carried out SEM and EDS analyses; while P. Osuch performed the WCA measurements.

Corresponding authors

Correspondence to Karolina Chat-Wilk or Ewa Rudnik.

Ethics declarations

Authors declare no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karolina Chat-Wilk, Rudnik, E., Włoch, G. et al. Codeposition of Zinc with Manganese from Different Gluconate Baths. Russ J Electrochem 58, 168–183 (2022). https://doi.org/10.1134/S1023193522030053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522030053

Keywords:

Navigation