Skip to main content
Log in

The Increase in Electrical Conductivity and the Appearance of Lipid Pores Induced by Magnetic Nanoparticles CoFe2O4 in Bilayer Lipid Membranes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrical conductivity of azolectine bilayer lipid membranes is observed to increase 10–40-fold with respect to its background value of 67 ± 13 pS/mm2 upon the addition of cubic CoFe2O4 nanoparticles with the main diagonal of 14 nm (MNP-14) and 27 nm (MNP-27). As the concentration of MNP-14 in the membrane solution increases from 50 to 450 µg/mL, the increase in the membrane conductivity with respect to its background value is nonlinear and can be approximated by the exponential dependence with exponent 2.75. Discrete current pulses are observed in the constant voltage mode for the MNP-14 concentration higher than 250 µg/mL and for all MNP-27 concentrations starting from 50 µg/mL, which points to the appearance of conducting lipid pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Mhashal, A.R. and Roy, S., Effect of gold nanoparticle on structure and fluidity of lipid membrane, PLoS ONE, 2014, vol. 9, e114152.

    Article  Google Scholar 

  2. Limbach, L.U., Li, Y., Grass, R.N., Brunner, T.J., Hintermann, M.A., Muller, M., Gunther, D., and Stark, W.J., Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations, Environ. Sci. Technol., 2005, vol. 39, p. 9370.

    Article  CAS  Google Scholar 

  3. Yang, K. and Ma, Y., Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer, Nat. Nanotechnol., 2010, vol. 5, p. 579.

    Article  CAS  Google Scholar 

  4. Gupta, R., Badhe, Y., Mitragotri, S., and Rai, B., Permeation of nanoparticles across intestinal lipid membrane: dependence on shape and surface chemistry studied through molecular simulations, Nanoscale, 2020, vol. 12, p. 6318.

    Article  CAS  Google Scholar 

  5. Farnoud, M. and Nazemidashtarjandia, S., Emerging investigator series: interactions of engineered nanomaterials with the cell plasma membrane; what have we learned from membrane models, Environ. Sci. Nano, 2019, vol. 6, p. 13.

    Article  CAS  Google Scholar 

  6. Wang, B., Zhang, L., Bae, S.C., and Granick, S., Nanoparticle-induced surface reconstruction of phospholipid membranes, PNAS, 2008, vol. 105, p. 18171.

    Article  CAS  Google Scholar 

  7. Park, B.J., Choi, K.H., Nam, K.C., et al., Photodynamic anticancer activity of CoFe2O4 nanoparticles conjugated with hematoporphyrin, J. Nanosci. Nanotechnol., 2015, vol. 15, p. 7900.

    Article  CAS  Google Scholar 

  8. Lambert, I. and Joyer, F., Solubility of cobalt in primary circuit solutions: Proc 6, in BNES International Conference of Water Chemistry of Nuclear Reactor Systems, Bournemouth: Thomas Telford, 1992, vol. 1, p. 196.

  9. Kim, D., Nikles, D.E., Johnson, D.T., and Brazel, C.S., Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia, J. Magnetism Magnetic Mater., 2008, vol. 320, p. 2390.

    Article  CAS  Google Scholar 

  10. Tabish, T.A., Ashiq, M.N., Ullah, M.A., Iqbal, S., Latif, M., Ali, M., Ehsan, M.F., and Iqbal, F., Biocompatibility of cobalt iron oxide magnetic nanoparticles in male rabbits, Korean J. Chem. Eng., 2015, vol. 32, p. 1.

    Article  Google Scholar 

  11. Loan, N.T.T., Lan, N.T.H., Hang, N.T.T., Hai, N.Q., Anh, D.T.T., Hau, V.T., Tan, L.V., and Tran, T.V., CoFe2O4 nanomaterials: effect of annealing temperature on characterization, magnetic, photocatalytic, and photo-Fenton properties, Processes, 2019, vol. 7, p. 885.

    Article  CAS  Google Scholar 

  12. Urban, P., Kirchner, S.R., Mühlbauer, C., Lohmüller, T., and Feldmann, J., Reversible control of current across lipid membranes by local heating, Sci. Rep., 2016, vol. 6, p. 22686.

    Article  CAS  Google Scholar 

  13. Koplak, O.V., Kunitsyna, E.I., Allayarov, R.S., Mangin, S., Granovskii, N.V., and Morgunov, R.B., Magnetization reversal of ferromagnetic CoFeB films and CoFeB/Ta/CoFeB heterostructures in the stray field of Fe/Fe3O4, J. Exp. Theor. Phys., 2020, vol. 131, p. 607.

    Article  CAS  Google Scholar 

  14. Antonov, V.F., Smirnova, E.Y., Anosov, A.A., Norik, V.P., and Nemchenko, O.Y., PEG blocking of single pores arising on phase transitions in unmodified lipid bilayers, Biophysics, 2008, vol. 53, p. 390.

    Article  Google Scholar 

  15. Antonov, V.F., Anosov, A.A., Norik, V.P., and Smirnova, E.Y., Soft perforation of planar transition from the liquid crystalline to gel state, Eur. Biophys. J., 2005, vol. 34, p. 155.

    Article  CAS  Google Scholar 

  16. Hianik, T., Electrostriction and dynamics of solid supported lipid films, Rev. Mol. Biotechnol., 2000, vol. 74, p. 189.

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out within the framework of problems elaborated at the Institute of Problems of Chemical Physics of the Russian Academy of Sciences (АААА-А19-119092390079-8) and also at the Institute of Radio-engineering and Electronics of the Russian Academy of Sciences (AAAA-A19-119041590070-1). The study was supported by the grant of the President of RF for Leading Scientific Schools 2644.2020.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Derunets.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anosov, A.A., Korepanova, E.A., Koplak, O.V. et al. The Increase in Electrical Conductivity and the Appearance of Lipid Pores Induced by Magnetic Nanoparticles CoFe2O4 in Bilayer Lipid Membranes. Russ J Electrochem 58, 321–328 (2022). https://doi.org/10.1134/S102319352203003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352203003X

Keywords:

Navigation