Skip to main content
Log in

Different effects of two Poloxamers (L61 and F68) on the conductance of bilayer lipid membranes

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The integral conductance of planar lipid bilayer membranes in the presence of two Poloxamers (Pluronics) L61 and F68 with the same lengths of hydrophobic poly(propylene oxide) blocks and the different lengths of hydrophilic poly(ethylene oxide) blocks increases with an increase in the concentration of both Pluronics; however, the shape of the conductance-concentration curves is super linear for L61 and sublinear for F68. In the presence of both Pluronics, rare discrete current jumps are observed against the background of continuous current. At high concentrations, the I–V curves of membranes with both L61 and F68 became nonlinear at sufficiently low voltages but differed significantly. At voltages greater than 50 mV, the conductance of membranes with L61 increased sharply and quantized jumps were observed toward higher conductance, which could be interpreted as the appearance of additional pores. On the contrary, the conductance of membranes with F68 decreased and quantized jumps to lower conductance were observed, which could be interpreted as blocking of already existing pores. We attributed the differences in the conductance-concentration and I–V curves of these two Pluronics to their different effects on the dynamics of membrane hydration and, accordingly, on the probability of formation of conducting pores.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Fusco, A. Borzacchiello, P.A. Netti, Perspectives on: PEO- PPO-PEO triblock copolymers and their biomedical applications. J. Bioact. Compat. Polym. 21(2), 149–164 (2006). https://doi.org/10.1177/0883911506063207

    Article  Google Scholar 

  2. A. Rey-Rico, M. Cucchiarini, PEO-PPO-PEO tri-block copolymers for gene delivery applications in human regenerative medicine—an overview. Int. J. Mol. Sci. 19(3), 775 (2018). https://doi.org/10.3390/ijms19030775

    Article  Google Scholar 

  3. P. Zarrintaj, J.D. Ramsey, A. Samadi et al., Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomater. 110(1), 37–67 (2020). https://doi.org/10.1016/j.actbio.2020.04.028

    Article  Google Scholar 

  4. S. Nawaz, M. Redhead, G. Mantovani et al., Interactions of PEO–PPO–PEO block copolymers with lipid membranes: a computational and experimental study linking membrane lysis with polymer structure. Soft Matter 8(25), 6744–6754 (2012). https://doi.org/10.1039/C2SM25327E

    Article  ADS  Google Scholar 

  5. M. Redhead, G. Mantovani, S. Nawaz et al., Relationship between the affinity of PEO-PPO-PEO block copolymers for biological membranes and their cellular effects. Pharm. Res. 29(7), 1908–1918 (2012). https://doi.org/10.1007/s11095-012-0716-6

    Article  Google Scholar 

  6. A. da Oshiro, D.C. Silva, J.C. de Mello et al., Pluronics F-127/L-81 binary hydrogels as drug-delivery systems: influence of physicochemical aspects on release kinetics and cytotoxicity. Langmuir 30(45), 13689–13698 (2014). https://doi.org/10.1021/la503021c

    Article  Google Scholar 

  7. O.A. Budkina, T.V. Demina, T.Y. Dorodnykh et al., Cytotoxicity of nonionic amphiphilic copolymers. Polym. Sci. Ser. A. 54, 707–717 (2012). https://doi.org/10.1134/S0965545X12080020

    Article  Google Scholar 

  8. V. Sharma, K. Stebe, J.C. Murphy et al., Poloxamer 188 decreases susceptibility of artificial lipid membranes to electroporation. Biophys. J. 19, 3229–3241 (1996). https://doi.org/10.1016/S0006-3495(96)79516-4

    Article  Google Scholar 

  9. L. Tung, G.C. Troiano, V. Sharma et al., Changes in electroporation thresholds of lipid membranes by surfactants and peptides. Ann. N. Y. Acad. Sci. 888(1), 249–265 (1999). https://doi.org/10.1111/j.1749-6632.1999.tb07960.x

    Article  ADS  Google Scholar 

  10. J.Y. Wang, J. Chin, J.D. Marks, K.Y.C. Lee, Effects of PEO-PPO-PEO triblock copolymers on phospholipid membrane integrity under osmotic stress. Langmuir 26(15), 12953–12961 (2010). https://doi.org/10.1021/la101841a

    Article  Google Scholar 

  11. J.Y. Wang, J. Marks, K.Y.C. Lee, Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes:(I) effect of polymer hydrophobicity on its ability to protect liposomes from peroxidation. Biomacromol 13(9), 2616–2623 (2012). https://doi.org/10.1021/bm300847x

    Article  Google Scholar 

  12. J. Hannig, D. Zhang, D.J. Canaday et al., Surfactant sealing of membranes permeabilized by ionizing radiation. Radiat. Res. 154(2), 171–177 (2000). https://doi.org/10.1667/0033-7587(2000)154[0171:SSOMPB]2.0.CO;2

    Article  ADS  Google Scholar 

  13. L.C. Chang, C.Y. Lin, M.W. Kuo, C.S. Gau, Interactions of Pluronics with phospholipid monolayers at the air–water interface. J. Colloid Interface Sci. 285(2), 640–652 (2005). https://doi.org/10.1016/j.jcis.2004.11.011

    Article  ADS  Google Scholar 

  14. G. Wu, J. Majewski, C. Ege et al., Lipid corralling and poloxamer squeeze-out in membranes. Phys. Rev. Lett. 93, 028101 (2004). https://doi.org/10.1103/PhysRevLett.93.028101

    Article  ADS  Google Scholar 

  15. G. Wu, J. Majewski, C. Ege et al., Interaction between lipid monolayers and poloxamer 188: an X-ray reflectivity and diffraction study. Biophys. J. 89(5), 3159–3173 (2005). https://doi.org/10.1529/biophysj.104.052290

    Article  Google Scholar 

  16. S.A. Maskarinec, J. Hannig, R.C. Lee, K.Y.C. Lee, Direct observation of poloxamer 188 insertion into lipid monolayers. Biophys. J. 82(3), 1453–1459 (2002). https://doi.org/10.1016/S0006-3495(02)75499-4

    Article  Google Scholar 

  17. S.A. Maskarinec, G. Wu, K.Y.C. Lee, Membrane sealing by polymers. Ann. N. Y. Acad. Sci. 1066(1), 310–320 (2006). https://doi.org/10.1196/annals.1363.018

    Article  Google Scholar 

  18. S.L. Frey, K.Y.C. Lee, Temperature dependence of poloxamer insertion into and squeeze-out from lipid monolayers. Langmuir 23(5), 2631–2637 (2007). https://doi.org/10.1021/la0626398

    Article  Google Scholar 

  19. P. Nigam, Equilibrium penetration of pluronic F-68 in lipid monolayers. Chem. Phys. Lipids 228, 104888 (2020). https://doi.org/10.1016/j.chemphyslip.2020.104888

    Article  Google Scholar 

  20. O.O. Krylova, N.S. Melik-Nubarov, G.A. Badun et al., Pluronic L61 accelerates flip–flop and transbilayer doxorubicin permeation. Chem.—Eur. J. 9(15), 3930–3936 (2003). https://doi.org/10.1002/chem.200204621

    Article  Google Scholar 

  21. V.Y. Erukova, O.O. Krylova, Y.N. Antonenko, N.S. Melik-Nubarov et al., Effect of ethylene oxide and propylene oxide block copolymers on the permeability of bilayer lipid membranes to small solutes including doxorubicin. Biochim. Biophys. Acta - Biomembr. 1468(1–2), 73–86 (2000). https://doi.org/10.1016/S0005-2736(00)00244-3

    Article  Google Scholar 

  22. I.D. Grozdova, G.A. Badun, M.G. Chernysheva et al., Increase in the length of poly (ethylene oxide) blocks in amphiphilic copolymers facilitates their cellular uptake. J. Appl. Polym. Sci. 134(44), 45492 (2017). https://doi.org/10.1002/app.45492

    Article  Google Scholar 

  23. O.O. Krylova, P. Pohl, Ionophoric activity of pluronic block copolymers. Biochemistry 43(12), 3696–3703 (2004). https://doi.org/10.1021/bi035768l

    Article  Google Scholar 

  24. E.N. Ileri, P. Stroeve, J.W. Tringe, R. Faller, Understanding the interaction of pluronics L61 and L64 with a DOPC lipid bilayer: an atomistic molecular dynamics study. Langmuir 32(39), 10026–10033 (2016). https://doi.org/10.1021/acs.langmuir.6b02360

    Article  Google Scholar 

  25. S. Hezaveh, S. Samanta, A. De Nicola et al., Understanding the interaction of block copolymers with DMPC lipid bilayer using coarse-grained molecular dynamics simulations. J. Phys. Chem. B. 116(49), 14333–14345 (2012). https://doi.org/10.1021/jp306565e

    Article  Google Scholar 

  26. H. Rabbel, M. Werner, J.U. Sommer, Interactions of amphiphilic triblock copolymers with lipid membranes: modes of interaction and effect on permeability examined by generic Monte Carlo simulations. Macromolecules 48(13), 4724–4732 (2015). https://doi.org/10.1021/acs.macromol.5b00720

    Article  ADS  Google Scholar 

  27. A.M. Zaki, P. Carbone, How the incorporation of pluronic block copolymers modulates the response of lipid membranes to mechanical stress. Langmuir 33(46), 13284–13294 (2017). https://doi.org/10.1021/acs.langmuir.7b02244

    Article  Google Scholar 

  28. C.Y. Cheng, J.Y. Wang, R. Kausik et al., Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes:(II) role of hydration dynamics revealed by dynamic nuclear polarization. Biomacromol 13(9), 2624–2633 (2012). https://doi.org/10.1021/bm300848c

    Article  Google Scholar 

  29. P. Mueller, D.O. Rudin, H.T. Tien et al., Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194, 979–980 (1962). https://doi.org/10.1038/194979a0

    Article  ADS  Google Scholar 

  30. S. Tristram-Nagle, D.J. Kim, N. Akhunzada et al., Structure and water permeability of fully hydrated diphytanoylPC. Chem. Phys. Lipids. 163(6), 630–637 (2010). https://doi.org/10.1016/j.chemphyslip.2010.04.011

    Article  Google Scholar 

  31. N. Melik-Nubarov, O. Krylova, The control of membrane properties by synthetic polymers. Adv. Planar Lipid. Bilayers Liposomes 2, 121–166 (2005). https://doi.org/10.1016/S1554-4516(05)02005-3

    Article  Google Scholar 

  32. W. Zhang, M.L. Coughlin, J.M. Metzger et al., Influence of cholesterol and bilayer curvature on the interaction of PPO–PEO block copolymers with liposomes. Langmuir 35(22), 7231–7241 (2019). https://doi.org/10.1021/acs.langmuir.9b00572

    Article  Google Scholar 

  33. W. Zhang, J.M. Metzger, B.J. Hackel et al., Influence of the headgroup on the interaction of Poly (ethylene oxide)-Poly (propylene oxide) block copolymers with lipid bilayers. J. Phys. Chem. B 124(12), 2417–2424 (2020). https://doi.org/10.1021/acs.jpcb.0c00553

    Article  Google Scholar 

  34. A. Hädicke, A. Blume, Interactions of Pluronic block copolymers with lipid vesicles depend on lipid phase and Pluronic aggregation state. Colloid Polym. Sci. 293, 267–276 (2015). https://doi.org/10.1007/s00396-014-3414-6

    Article  Google Scholar 

  35. B. Lee, M.A. Firestone, Electron density mapping of triblock copolymers associated with model biomembranes: insights into conformational states and effect on bilayer structure. Biomacromol 9(6), 1541–1550 (2008). https://doi.org/10.1021/bm701348r

    Article  Google Scholar 

  36. K.A. Zecchi, T. Heimburg, Non-linear conductance, rectification, and mechanosensitive channel formation of lipid membranes. Front. Cell Dev. Biol. 8, 592520 (2021). https://doi.org/10.3389/fcell.2020.592520

    Article  Google Scholar 

  37. M. LeMasurier, L. Heginbotham, C. Miller, KcsA: it’s a potassium channel. J. Gen. Physiol. 118(3), 303–314 (2001). https://doi.org/10.1085/jgp.118.3.303

    Article  Google Scholar 

  38. I.G. Abidor, V.B. Arakelyan, L.V. Chernomordik et al., Electric breakdown of bilayer lipid membranes: I. The main experimental facts and their qualitative discussion. J. Electroanal. Chem. Interfac. Electrochem. 104, 37–52 (1979). https://doi.org/10.1016/S0022-0728(79)81006-2

    Article  Google Scholar 

  39. R.W. Glaser, S.L. Leikin, L.V. Chernomordik et al., Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim. Biophys. Acta—Biomembr. 940(2), 275–287 (1988). https://doi.org/10.1016/0005-2736(88)90202-7

    Article  Google Scholar 

  40. J.C. Weaver, Y.A. Chizmadzhev, Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41(2), 135–160 (1996). https://doi.org/10.1016/S0302-4598(96)05062-3

    Article  Google Scholar 

  41. T. Kotnik, L. Rems, M. Tarek, D. Miklavčič, Membrane electroporation and electropermeabilization: mechanisms and models. Annu. Rev. Biophys. 48, 63–91 (2019). https://doi.org/10.1146/annurev-biophys-052118-115451

    Article  Google Scholar 

  42. H. Heerklotz, Interactions of surfactants with lipid membranes. Q. Rev. Biophys. 41(3–4), 205–264 (2008). https://doi.org/10.1017/S0033583508004721

    Article  Google Scholar 

  43. A.A. Anosov, E.Y. Smirnova, E.A. Korepanova, I.M. Shogenov, The effects of SDS at subsolubilizing concentrations on the planar lipid bilayer permeability: two kinds of current fluctuations. Chem. Phys. Lipids 218, 10–15 (2019). https://doi.org/10.1016/j.chemphyslip.2018.11.005

    Article  Google Scholar 

  44. R.A. Böckmann, B.L. De Groot, S. Kakorin et al., Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys. J. 95(4), 1837–1850 (2008). https://doi.org/10.1529/biophysj.108.129437

    Article  ADS  Google Scholar 

  45. J. Teissie, T.Y. Tsong, Electric field induced transient pores in phospholipid bilayer vesicles. Biochemistry 20(6), 1548–1554 (1981). https://doi.org/10.1021/bi00509a022

    Article  Google Scholar 

  46. Z.A. Levine, P.T. Vernier, Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J. Membr. Biol. 236, 27–36 (2010). https://doi.org/10.1007/s00232-010-9277-y

    Article  Google Scholar 

  47. S.A. Kirsch, R.A. Böckmann, Membrane pore formation in atomistic and coarse-grained simulations. Biochim. Biophys. Acta—Biomembr. 1858(10), 2266–2277 (2016). https://doi.org/10.1016/j.bbamem.2015.12.031

    Article  Google Scholar 

  48. W.D. Bennett, N. Sapay, D.P. Tieleman, Atomistic simulations of pore formation and closure in lipid bilayers. Biophys. J. 106(1), 210–219 (2014). https://doi.org/10.1016/j.bpj.2013.11.4486

    Article  ADS  Google Scholar 

  49. J.T. Sengel, M.I. Wallace, Imaging the dynamics of individual electropores. Proc. Natl. Acad. Sci. USA 113(19), 5281–5286 (2016). https://doi.org/10.1073/pnas.1517437113

    Article  ADS  Google Scholar 

  50. K.C. Melikov, V.A. Frolov, A. Shcherbakov et al., Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys. J. 80(4), 1829–1836 (2001). https://doi.org/10.1016/S0006-3495(01)76153-X

    Article  Google Scholar 

  51. F. Dehez, L. Delemotte, P. Kramar et al., Evidence of conducting hydrophobic nanopores across membranes in response to an electric field. J. Phys. Chem. C 118(13), 6752–6757 (2014). https://doi.org/10.1021/jp4114865

    Article  Google Scholar 

  52. A. Velikonja, P. Kramar, D. Miklavčič et al., Specific electrical capacitance and voltage breakdown as a function of temperature for different planar lipid bilayers. Bioelectrochemistry 112, 132–137 (2016). https://doi.org/10.1016/j.bioelechem.2016.02.009

    Article  Google Scholar 

  53. A.A. Anosov, E.Y. Smirnova, A.A. Sharakshane et al., Increase in the current variance in bilayer lipid membranes near phase transition as a result of the occurrence of hydrophobic defects. Biochim. Biophys. Acta—Biomembr. 1862(2), 183147 (2020). https://doi.org/10.1016/j.bbamem.2019.183147

    Article  Google Scholar 

  54. S.A. Akimov, P.E. Volynsky, T.R. Galimzyanov et al., Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci. Rep. 7, 1–20 (2017). https://doi.org/10.1038/s41598-017-12127-7

    Article  Google Scholar 

  55. J.S. Hub, N. Awasthi, Probing a continuous polar defect: A reaction coordinate for pore formation in lipid membranes. J. Chem. Theory. Comput. 13(5), 2352–2366 (2017). https://doi.org/10.1021/acs.jctc.7b00106

    Article  Google Scholar 

  56. C.L. Ting, N. Awasthi, M. Müller, J.S. Hub, Metastable prepores in tension-free lipid bilayers. Phys. Rev. Lett. 120, 128103 (2018). https://doi.org/10.1103/PhysRevLett.120.128103

    Article  ADS  Google Scholar 

  57. G. Bubnis, H. Grubmüller, Sequential water and headgroup merger: Membrane poration paths and energetics from MD simulations. Biophys. J. 119(12), 2418–2430 (2020). https://doi.org/10.1016/j.bpj.2020.10.037

    Article  ADS  Google Scholar 

  58. H. Zhu, Y. Wang, Y. Fan et al., Structure and transport properties of water and hydrated ions in nano-confined channels. Adv. Theory Simul. 2(6), 1900016 (2019). https://doi.org/10.1002/adts.201900016

    Article  Google Scholar 

  59. Thiruraman, J.P., Das, M.P., Drndić, M.: Ions and water dancing through atom-scale holes: a perspective toward “size zero”. ACS Nano 14(4), 3736–3746 (2020). https://doi.org/10.1021/acsnano.0c01625

  60. J. Geng, K. Kim, J. Zhang et al., Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514, 612–615 (2014). https://doi.org/10.1038/nature13817

    Article  ADS  Google Scholar 

  61. C. Peter, G. Hummer, Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophys. J. 89(4), 2222–2234 (2005). https://doi.org/10.1529/biophysj.105.065946

    Article  ADS  Google Scholar 

  62. O. Beckstein, M.S. Sansom, Liquid–vapor oscillations of water in hydrophobic nanopores. Proc. Natl. Acad. Sci. USA 100(12), 7063–7068 (2003). https://doi.org/10.1073/pnas.1136844100

    Article  ADS  Google Scholar 

  63. C.I. Lynch, S. Rao, M.S. Sansom, Water in nanopores and biological channels: a molecular simulation perspective. Chem. Rev. 120(18), 10298–10335 (2020). https://doi.org/10.1021/acs.chemrev.9b00830

    Article  Google Scholar 

  64. S. Rao, G. Klesse, C.I. Lynch et al., Molecular simulations of hydrophobic gating of pentameric ligand gated ion channels: Insights into water and ions. J. Phys. Chem. B. 125(4), 981–994 (2021). https://doi.org/10.1021/acs.jpcb.0c09285

    Article  Google Scholar 

  65. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001). https://doi.org/10.1038/35102535

    Article  ADS  Google Scholar 

  66. J. Dzubiella, R.J. Allen, J.P. Hansen, Electric field-controlled water permeation coupled to ion transport through a nanopore. J. Chem. Phys. 120, 5001–5004 (2004). https://doi.org/10.1063/1.1665656

    Article  ADS  Google Scholar 

  67. J. Dzubiella, J.P. Hansen, Electric-field-controlled water and ion permeation of a hydrophobic nanopore. J. Chem. Phys. 122, 234706 (2005). https://doi.org/10.1063/1.1927514

    Article  ADS  Google Scholar 

  68. M.R. Powell, L. Cleary, M. Davenport et al., Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat. Nanotechnol. 6, 798–802 (2011). https://doi.org/10.1038/nnano.2011.189

    Article  ADS  Google Scholar 

  69. J. Yoon, N. Leblanc, J. Zaklit et al., Enhanced monitoring of nanosecond electric pulse-evoked membrane conductance changes in whole-cell patch clamp experiments. J. Membr. Biol. 249, 633–644 (2016). https://doi.org/10.1007/s00232-016-9902-5

    Article  Google Scholar 

  70. R.C. Lee, L.P. River, F.S. Pan et al., Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc. Natl. Acad. Sci. USA 89(10), 4524–4528 (1992). https://doi.org/10.1073/pnas.89.10.4524

    Article  ADS  Google Scholar 

  71. J.T. Sengel, M.I. Wallace, Measuring the potential energy barrier to lipid bilayer electroporation. Philos. Trans. R. Soc. B. 372(1726), 20160227 (2017). https://doi.org/10.1098/rstb.2016.0227

    Article  Google Scholar 

Download references

Funding

This research was supported within the framework of the state task of Kotelnikov Institute of Radioengineering and Electronics of RAS (AAAA-A19-119041590070-01).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by A.A. Anosov, E.A. Korepanova, V. A. Kazamanov and A.S. Derunets. The first draft of the manuscript was written by E. Yu. Smirnova and A. A. Anosov, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. S. Derunets.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

There is not any third-party financial support for the work in the submitted manuscript. There are not any financial relationships with any entities that could be viewed as relevant to the general area of the submitted manuscript. There are not any sources of revenue with relevance to the submitted work who made payments to us, or to our institution on our behalf, in the 36 months prior to submission. There are not any other interactions with the sponsor of outside of the submitted work. There are not any relevant patents or copy-rights (planned, pending, or issued). There are not any other relationships or affiliations that may be perceived by readers to have influenced, or give the appearance of potentially influencing, what we wrote in the submitted work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anosov, A.A., Smirnova, E.Y., Korepanova, E.A. et al. Different effects of two Poloxamers (L61 and F68) on the conductance of bilayer lipid membranes. Eur. Phys. J. E 46, 14 (2023). https://doi.org/10.1140/epje/s10189-023-00270-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00270-1

Navigation