Skip to main content
Log in

A Novel Method for the Polarographic Determination of Trace Nitrite in Water

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A method for polarographic determination of nitrites in water is developed. Nitrites firstly react with resorcinol, then the nitroso product reacts with nickel ion to form a complex, which can be reduced on dropping mercury electrode to produce a sensitive polarographic wave. The current signal has an excellent linear relation with the concentration of nitrite, the detection limit was 0.22 μg/L. The relative standard deviation is 2.80% and the recoveries were 95.0–102.9% at a nitrite concentration of 1.13 μg/L, most of the potential interferents are tolerated. The method is suitable for the determination of trace nitrite in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Chan, T.Y.K., Food-borne nitrates and nitrites as a cause of methemoglobinemia, Southeast Asian J. Trop. Med. Public Health, 1996, vol. 27, p. 189.

    CAS  PubMed  Google Scholar 

  2. Fahey, J.M. and Isaacson, R.L., Pretreatmenteffects on nitrite-induced methemoglobinemia-saline and calcium-channel antagonists, Pharmacol. Biochem. Behav., 1990, vol. 37, p. 457.

    Article  CAS  Google Scholar 

  3. Olajos, E.J. and Coulston, F., Comparative toxicology of N-nitroso compounds and their carcinogenic potential to man, Ecotoxicol. Environ. Saf., 1978, vol. 2, p. 317.

    Article  CAS  Google Scholar 

  4. Suzuki, H., Iijima, K., and Moriya, A., Conditions for acid catalysed luminal nitrosation are maximal at the gastric cardia, Gut, 2003, vol. 52, p. 1095.

    Article  CAS  Google Scholar 

  5. Jongen, W.M.F., Glucosinolates in Brassica: occurrence and significance as cancer-modulating agents, Proc. Nutr. Soc., 1996, vol. 55, p. 433.

    Article  CAS  Google Scholar 

  6. WHO. Guidelines for Drinking-Water Quality, 4th ed., World Health Organization, 2011, pp. 398–403.

  7. Singh, P., Beg, Y.R., and Nishad, G.R., A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples, Talanta, 2018, vol. 191, p. 364.

    Article  Google Scholar 

  8. Wang, Q., Huang, H., Ning, B., Li, M., and He, L., A highly sensitive and selective spectrofluorimetric method for the determination of nitrite in food products, Food. Anal. Methods, 2016, vol. 9, p. 1293.

    Article  Google Scholar 

  9. Wu, J., Wang, X., Lin, Y.T., Zheng, Y., and Lin, J.M., Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on microfluidic chip, Talanta, 2016, vol. 154, p. 73.

    Article  CAS  Google Scholar 

  10. Gill, A., Zajda, J., and Meyerhoff, M.E., Comparison of electrochemical nitric oxide detection methods with chemiluminescence for measuring nitrite concentration in food samples, Anal. Chim. Acta, 2019, vol. 1077, p. 167.

    Article  CAS  Google Scholar 

  11. Costa, R.B., Camiloti, P.R., Sabatini, C.A., Dos Santos, C.E.D., Lima Gomes, P.C.F., and Adorno, M.A.T., Matrix effect assessment of an ion chromatographic method to determine inorganic anions in wastewater, Water Air Soil Pollut., 2018, vol. 229, p. 212.1.

  12. Zhang, S.X., Peng, R., Jiang, R., Chai, X.S., and Barnes, D.G., A high-throughput headspace gas chromatographic technique for the determination of nitrite content in water samples, J. Chromatogr. A, 2018, vol. 1538, p. 104.

    Article  CAS  Google Scholar 

  13. Kalaycioglu, Z. and Erim, F.B., Simultaneous determination of nitrate and nitrite in fish products with improved sensitivity by sample stacking-capillary electrophoresis, Food Anal. Methods, 2016, vol. 9, no. 3, p. 706.

    Article  Google Scholar 

  14. Moravský, L., Troška, P., Klas, M., Marián,M., and Matejcík, S., Determination of nitrites and nitrates in plasma-activated deionized water by microchip capillary electrophoresis, Contrib. Plasma Phys., 2020, vol. 60, no. 7, p. e202000014.

    Article  Google Scholar 

  15. Zhao, Y.L., Zhao, D.A., and Li, D.L., Electrochemical and other methods for detection and determination of dissolved nitrite: a review, Int. J. Electrochem. Soc., 2015, vol. 10, no. 2, p. 1144.

    Google Scholar 

  16. Wang, Q.H., Yu, L.J., Liu, Y., Lin, L., Lu, R.G., Zhu, J.P., He, L., and Lu, Z.L., Methods for the detection and determination of nitrite and nitrate: areview, Talanta, 2017, vol. 165, p. 709.

    Article  CAS  Google Scholar 

  17. Mao, Y., Bao, Y., Han, D.X., and Zhao, B., Research progress on nitrite electrochemical sensor, Chin. J. Anal. Chem., 2018, vol. 46, no. 2, p. 147.

    Article  CAS  Google Scholar 

  18. Moorcroft, M.J., Davis, J., and Compton, R.G., Detection and determination of nitrate and nitrite: a review, Talanta, 2001, vol. 54, no. 5, p. 785.

    Article  CAS  Google Scholar 

  19. Sharma, P. and Sharma, R., Sequential trace determination of nitrate and nitrite in natural waters by differential pulse polarography, Int. J. Environ. Anal. Chem., 2002, vol. 82, no. 1, p. 7.

    Article  CAS  Google Scholar 

  20. Yilmaz, U.T. and Somer, G., Determination of trace nitrite by direct and indirect methods using differential pulse polarography and application, J. Electroanal. Chem., 2008, vol. 624, p. 59.

    Article  CAS  Google Scholar 

  21. Fieser, L.F. and Fieser, M., Advanced Organic Chemistry, New York: Reinhold, 1961.

    Google Scholar 

  22. Gabbay, J., Almog, Y., and Davidson, M., Rapid spectrophotometric microdetermination of nitrites in water, Analyst, 1977, vol. 102, p. 371.

    Article  CAS  Google Scholar 

  23. Li, X., Zou, N., Wang, Z.X., Sun, Y.L., Li, H.Y., Gao, C.P., Wang, T., and Wang, X.L., An electrochemical sensor for determination of nitrite based on Au nanoparticles decorated MoS2 nanosheets, Chem. Pap., 2020, vol. 74, no. 2, p. 441.

    Article  CAS  Google Scholar 

  24. Lei, H., Zhu, H., Sun, S.H., Zhu, Z.F., Hao, J.C., Lu, S.L., Cai, Y.R., Zhang, M., and Du, M.L., Synergistic integration of Au nanoparticles, Co-MOF and MWCNT as biosensors for sensitive detection of low-concentration nitrite, Electrochim. Acta, 2021, vol. 365, p. 137375.

    Article  CAS  Google Scholar 

  25. Wang, Y.H., Zeng, Z.X., Qiao, J.Y., Dong, S.Q., Liang, Q., and Shao, S.J., Ultrasensitive determination of nitrite based on electrochemical platform of AuNPs deposited on PDDA-modified MXene nanosheets, Talanta, 2021, vol. 221, p. 121605.

    Article  CAS  Google Scholar 

  26. Xu, H., Peng, J.C., Zhu, M.T., and Liu, J.S., Ultrasensitive detection of nitrite based on gold-nanoparticles/polyrhodamine B/carbon nanotubes modified glassy carbon electrode with enhanced electrochemical performance, Int. J. Electrochem. Sci., 2017, vol. 12, no. 11, p. 10642.

    Article  CAS  Google Scholar 

  27. Wu, S.S., Yin, Z.Z., Chen, X.H., Wang, X.Q., Wu, D.T., and Kong, Y., Electropolymerized melamine for simultaneous determination of nitrite and tartrazine, Food Chem., 2020, vol. 333, p. 127532.

    Article  CAS  Google Scholar 

  28. Asiri, A.M., Adeosun, W.A., and Rahman, M.M., Development of highly efficient non-enzymatic nitrite sensor using La2CuO4 nanoparticles, Microchem. J., 2020, vol. 159, p. 105527.

    Article  CAS  Google Scholar 

  29. Annalakshmi, M., Balaji, R., Chen, S.M., Chen, T.W., and Huang, Y.C., A sensitive and high-performance electrochemical detection of nitrite in water samples based on sonochemical synthesized strontium ferrite nanochain architectures, Electrochim. Acta, 2020, vol. 360, p. 136797.

    Article  CAS  Google Scholar 

  30. Shen, Y.L., Ma, C., Zhang, S.P., Li, P.C., Zhu, W.Q., Zhang, X.M., Gao, J.J., Song, H.O., Chen, D.Z., Pang, D., and Li, A.M., Nanosilver and protonated carbon nitride co-coated carbon cloth fibers based non-enzymatic electrochemical sensor for determination of carcinogenic nitrite, Sci. Total Environ., 2020, vol. 742, p. 140622.

    Article  CAS  Google Scholar 

  31. Liu, L., Cui, H., An, H., Zhai, J.Z., and Pan, Y., Electrochemical detection of aqueous nitrite based on poly(aniline-co-o-aminophenol)-modified glassy carbon electrode, Ionics, 2017, vol. 23, p. 1517.

    Article  CAS  Google Scholar 

  32. Lei, P., Zhou, Y., Zhu, R.Q., Wu, S., Jiang, C.B., Dong, C., Liu, Y., and Shuang, S.M., Gold nanoparticles decorated bimetallic CuNi-based hollow nanoarchitecture for theenhancement ofelectrochemical sensing performance of nitrite, Microchim. Acta, 2020, vol. 187, p. 572.

    Article  CAS  Google Scholar 

  33. Stozhko, N.Y., Bukharinova, M.A., Khamzina, E.I., Tarasov, A.V., and Sokolkov, S.V., Film carbon veil-based electrode modified with Triton X-100 for nitrite determination, Chemosensors, 2020, vol. 8, no. 3, p. 78.

    Article  CAS  Google Scholar 

  34. Ding, S., Tan, Y., and Zhang, Z., Investigation on polarography with linearly changing potential XIII on the general theory for the adsorptive-complex wave, Acta Chim. Sin., 1991, vol. 4, p. 400.

    Google Scholar 

Download references

Funding

This research was supported by the Science and Technology Research Plan of Liaoning Province Education Department [L2020lkyfwdf-06, L JKZ1064]; the Doctoral Start-up Foundation of Liaoning Provincial Natural Science Foundation of China [2019-BS-128, 2019-BS-129]; and the Enterprise Doctor Entrepreneurship and Innovation Project in 2020 of Yingkou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. H. Li.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y.S., Li, X.H., Zhang, D.F. et al. A Novel Method for the Polarographic Determination of Trace Nitrite in Water. Russ J Electrochem 58, 32–42 (2022). https://doi.org/10.1134/S1023193522010153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522010153

Keywords:

Navigation