Skip to main content
Log in

A new sensitive method for the determination of trace mercury by differential pulse polarography: Application to raw salt sample

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A new indirect differential pulse polarographic (DPP) method is established for the trace determination of mercury(II). Because of its toxic effects on human health, trace determination of mercury is very important. An indirect method had to be used since no polarographic peak is observed in its direct determination. According to the standard potentials, the reaction between Sn(II) and Hg(II) was found suitable. The peak of Sn(II) at about −0.40 V is sharp, high and very reproducible, which enables the determination of low concentrations of Hg(II). For this purpose, to a known amount of Sn(II) present in the polarographic cell (acetic acid, HAc, pH 1–2), the unknown Hg(II) sample is added and the quantitative reaction takes place directly in the cell. The Hg(II) concentration is calculated simply from the decrease of the Sn(II) peak. The limit of detection (LOD) was found as 2 × 10−7 M for S/N = 3. Interferences of some common cations, such as Fe, Cd, Cu, Zn and Pb and anions have been investigated. Only Pb had an overlapping peak with Sn(II). This peak overlap was eliminated simply by working at pH 2 (HAc electrolyte), because of the shift of the Pb peak in the Ac complex to −0.7 V. This method was successfully applied to synthetic samples and raw salt sample taken from a salt lake in Turkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mays, D.E and Hussam, A., Anal. Chim. Acta, 2009, vol. 6, p. 646.

    Google Scholar 

  2. Biester, H., Muller, G., and Scholer, H.F., Sci. Total Environ., 2002, vol. 284, p. 191.

    Article  CAS  Google Scholar 

  3. Clarkson, T.W., Environ. Health Perspect., 2002, vol. 110, p. 11.

    Article  CAS  Google Scholar 

  4. Boening, D.W., Chemosphere, 2000, vol. 40, p. 1335.

    Article  CAS  Google Scholar 

  5. Downs, S.G., Macleod, C.L., and Lester, J.N., Water Air Soil Pollut., 1998, vol. 108, p. 149.

    Article  CAS  Google Scholar 

  6. Boszke, L., Siepak, J., and Falandysz, J., Pol. J. Environ. Stud., 2003, vol. 12(3), p. 275.

    CAS  Google Scholar 

  7. Mokhtar, M.B., Awaluddin, A.B., Wood, A.K., and Sim, C.P., Fres. Environ. Bull., 2002, vol. 11, p. 1053.

    CAS  Google Scholar 

  8. Long, S.E. and Kelly, W.R., Anal. Chem., 2002, vol. 74, p. 1477.

    Article  CAS  Google Scholar 

  9. Mahar, M., Tyson, J.F., Neubauer, K., and Grosser, Z., J. Anal. At. Spectrom., 2008, vol. 23, p. 1204.

    Article  CAS  Google Scholar 

  10. Dos Santos, E.J., Herrmann, A.B., Vieira, F., Sato, C.S., Correa, Q.B., Maranhao, T.A., Tormen, L., and Curtius, A.J., Microchem, J., 2010, vol. 96, p. 27.

    Article  Google Scholar 

  11. Duan, T., Song, X., Xu, J., Guo, P., Chen, H., and Li, H., Spectrochim. Acta B, 2006, vol. 61, p. 1069.

    Article  Google Scholar 

  12. Zapata, I.J., Pohl, P., Bings, N.H., and Broekaert, J.A.C., Anal., Bioanal. Chem., 2007, vol. 388, p. 1615.

    Article  Google Scholar 

  13. Shafawi, A., Ebdon, L., Foulkes, M., Stockwell, P., and Corns, W., Analyst, 1999, vol. 124, p. 185.

    Article  CAS  Google Scholar 

  14. Costley, C.T., Mossop, K.F., Dean, J.R., Garden, L.M., Marshall, J., and Carroll, J., Anal. Chim. Acta, 2000, vol. 405, p. 179.

    Article  CAS  Google Scholar 

  15. Singh, L.P. and Bhatnagar, J.M., J. Appl. Electrochem., 2004, vol. 34, p. 391.

    Article  CAS  Google Scholar 

  16. Brainina, Kh.Z., Stozhko, N.Yu., and Shalygina, Zh.V., J. Analyt. Chem., 2002, vol. 57, p. 1116.

    Article  Google Scholar 

  17. Marcolino-Junior, L.H., Janegitz, B.C., Lourencao, B.C., and Fatibello-Filho, O., Analyt. Lett., 2007, vol. 40, p. 3119.

    Article  CAS  Google Scholar 

  18. Allen, R.E. and Johnson, D.C., Talanta, 1973, vol. 20(9), p. 799.

    Article  CAS  Google Scholar 

  19. Mandil, A., Idrissi, L., and Amine, A., Microchim. Acta, 2010, vol. 170, p. 299.

    Article  CAS  Google Scholar 

  20. Somer, G., Anal. Chem. 1981, vol. 53, p. 2143.

    Article  CAS  Google Scholar 

  21. Somer, G., Kalaycι, Ş., and Ekmekci, G., Sens. Actuat. B, 2001, vol. 81, p. 122.

    Article  CAS  Google Scholar 

  22. West, P.W. and Vick, M.M., Qualitative Analysis and Analytical Chemical Separations, New York: McMillan Company, 1959, p. 230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Somer.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somer, G., Çalışkan, A.C. & Şendil, O. A new sensitive method for the determination of trace mercury by differential pulse polarography: Application to raw salt sample. J Anal Chem 69, 1083–1088 (2014). https://doi.org/10.1134/S1061934814110112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934814110112

Keywords

Navigation