Skip to main content
Log in

Impact of the Synthesis Method on Electrochemical Performance of La0.5Sr0.5MnO3 Perovskite Oxide as a Cathode Material in Alkaline Fuel Cells

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The present research investigates the sol–gel route using Pechini, citrate and alkoxide methods in order to obtain strontium doped lanthanum manganite perovskite La0.5Sr0.5MnO3 (LSMO) as nanometric materials. The electrocatalytic activity of carbon supported perovskite denoted (LSMO/C) used as an electrocatalyst for oxygen reduction reaction (ORR) in 0.1 M KOH electrolyte has been studied using a rotating disk electrode. The oxide powders were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Brunauer–Emmett–Teller (BET) method and transmission electron microscopy (TEM). X-ray diffraction results showed that the powders were primarily identified to a perovskite structure phase La0.5Sr0.5MnO3 with nanometric sized particles of about 20 nm and homogeneous morphology. Results related to the electrochemical study of ORR showed that the perovskite oxide synthesized by the Pechini method yielded an electrode material with improved electrochemical activity compared to those elaborated through citrate and alkoxide methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Li, Q., Guo, M., Wang, K., Wei, Z., Du, G., Zhang, G., and Chen, N., LaSr2Mn2O7 ruddlesden-popper manganites for oxygen reduction and electrochemical capacitors, J. Rare Earths, 2020, vol. 38, p. 763.

    Article  CAS  Google Scholar 

  2. Lim, D., Kong, H., Lim, C., Kim, N., Shim, S.E., and Baeck, S.H., Spinel-type NiCo2O4 with abundant oxygen vacancies as a high-performance catalyst for the oxygen reduction reaction, Int. J. Hydrogen Energy, 2019, vol. 44, p. 23775.

    Article  CAS  Google Scholar 

  3. Jin, C., Cao, X., Zhang, L., Zhang, C., and Yang, R., Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction, J. Power Sources, 2013, vol. 24, p. 225.

    Article  Google Scholar 

  4. Gong, K., Du, F., Xia, Z., Durstock, M., and Dai, L., Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, Science, 2009, vol. 323, p. 760.

    Article  CAS  Google Scholar 

  5. Garcia, E.M., Tarôco, H.A., Matencio, T., Domin-gues, R.Z., and Dos Santos, J.A.F., Electrochemical study of La0.6Sr0.4Co0.8Fe0.2O3 during oxygen evolution reaction, Int. J. Hydrogen Energy, 2012, vol. 37, p. 6400.

    Article  CAS  Google Scholar 

  6. Suntivich, J., Gasteiger, H.A., Yabuuchi, N., Nakanishi, H., Goodenough, J.B., and Shao-Horn, Y., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries, Nat. Chem., 2011, vol. 3, p. 546.

    Article  CAS  Google Scholar 

  7. Teng, F., Han, W., Liang, S., Gaugeu, B., Zong, R., and Zhu, Y., Catalytic behavior of hydrothermally synthesized La0.5Sr0.5MnO3 single-crystal cubes in the oxidation of CO and CH4, J. Catal., 2007, vol. 250, p. 1.

    Article  CAS  Google Scholar 

  8. Ngida, R.E.A., Zawrah, M.F., Khattab, R.M., and Heikal, E., Hydrothermal synthesis, sintering and characterization of nano La-manganite perovskite doped with Ca or Sr, Ceram. Int., 2019, vol. 45, p. 4894.

    Article  CAS  Google Scholar 

  9. Zi, Z.F., Sun, Y.P., Zhu, X.B., Yang, Z.R., Dai, J.M., and Song, W.H., Synthesis of magnetoresistive La0.7Sr0.3MnO3 nanoparticles by an improved chemical coprecipitation method, J. Magn. Magn. Mater., 2009, vol. 321, p. 2378.

    Article  CAS  Google Scholar 

  10. Haron, W., Wisitsoraat, A., Sirimahachai, U., and Wongnawa, S., A simple synthesis and xharacterization of LaMO3 (M = Al, Co, Fe, Gd) perovskites via chemical co-precipitation method, Songklanakarin J. Sci. Technol., 2018, vol. 40, p. 484.

    CAS  Google Scholar 

  11. Zhang, Q. and Saito, F., Mechanochemical synthesis of LaMnO3 from La2O3 and Mn2O3 powders, J. Alloys Compd., 2000, vol. 297, p. 99.

    Article  CAS  Google Scholar 

  12. Nâamoune, F., Messaoudi, B., Kahoul, A., Cherchour, N., Pailleret, A., and Takenouti, H., A new sol-gel synthesis of Mn3O4 oxide and its electrochemical behavior in alkaline medium, Ionics (Kiel), 2012, vol. 18, p. 365.

    Article  Google Scholar 

  13. Kahoul, A., Nkeng, P., Hammouche, A., Naamoune, F., and Poillerat, G., A sol-gel route for the synthesis of Bi2Ru2O7 pyrochlore oxide for oxygen reaction in alkaline medium, J. Solid State Chem., 2001, vol. 161, p. 379.

    Article  CAS  Google Scholar 

  14. Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure, J. Mol. Catal., 1986, vol. 38, p. 5.

    Article  CAS  Google Scholar 

  15. Geng, D., Chen, Y., Chen, Y., Li, Y., Li, R., Sun, X., Ye, S., and Knights, S., High oxygen-reduction activity and durability of nitrogen-doped graphene, Energy Environ. Sci., 2011, vol. 4, p. 760.

    Article  CAS  Google Scholar 

  16. Tulloch, J. and Donne, S.W., Activity of perovskite La1 – xSrxMnO3 catalysts towards oxygen reduction in alkaline electrolytes, J. Power Sources, 2009, vol. 188, p. 359.

    Article  CAS  Google Scholar 

  17. Siebert, E., Hammouche, A., and Kleitz, M., Impedance spectroscopy analysis of La1 – xSrxMnO3-yttria-stabilized zirconia electrode kinetics, Electrochim. Acta, 1995, vol. 40, p. 1741.

    Article  CAS  Google Scholar 

  18. Khellaf, N., Kahoul, A., Naamoune, F., and Alonso-Vante, N., Electrochemistry of nanocrystalline La0.5Sr0.5MnO3 perovskite for the oxygen reduction reaction in alkaline medium, Electrocatalysis, 2017, vol. 8, p. 450.

    Article  CAS  Google Scholar 

  19. Baythoun, M.S.G. and Sale, F.R., Production of strontium-substituted lanthanum manganite perovskite powder by the amorphous citrate process, J. Mater. Sci., 1982, vol. 17, p. 2757.

    Article  CAS  Google Scholar 

  20. Livage, J., Beteille, F., Roux, C., Chatry, M., and Davidson, P., Sol–gel synthesis of oxide materials, Acta Mater., 1998, vol. 46, p. 743.

    Article  CAS  Google Scholar 

  21. Thiele, D. and Züttel, A., Electrochemical characterisation of air electrodes based on La0.6Sr0.4CoO3 and carbon nanotubes, J. Power Sources, 2008, vol. 183, p. 590.

    Article  CAS  Google Scholar 

  22. Poux, T., Napolskiy, F.S., Dintzer, T., Kéranguéven, G., Istomin, S.Y., Tsirlina, G.A., Antipov, E.V., and Savinova, E.R., Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction, Catal. Today, 2012, vol. 189, p. 83.

    Article  CAS  Google Scholar 

  23. Zhu, Y., Zhou, W., and Shao, Z., Perovskite/carbon composites: applications in oxygen electrocatalysis, Small, 2017, vol. 13, p. 1.

    Google Scholar 

  24. Cullity, B., Answers to Problems: Elements of X-Ray Diffraction, Addison-Wesley, 1978.

    Google Scholar 

  25. Bursell, M., Pirjamali, M., and Kiros, Y., La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes, Electrochim. Acta, 2002, vol. 47, p. 1651.

    Article  CAS  Google Scholar 

  26. Jund, R., Koenig, J.F., and Brenet, J., Oxydation anodique des ions Mn2+ et Fe2+ en milieu marin reconstitue, Electrochim. Acta, 1981, vol. 26, p. 83.

    Article  CAS  Google Scholar 

  27. Kear, G. and Walsh, F., The characteristics of a true tafel slope, Corros. Mater., 2005, vol. 30, p. 51.

    Google Scholar 

  28. Tiwari, S.K., Chartier, P., and Singh, R.N., Preparation of perovskite-type oxides of cobalt by the malic acid aided process and their electrocatalytic surface properties in relation to oxygen evolution, J. Electrochem. Soc., 1995, vol. 142, p. 148.

    Article  CAS  Google Scholar 

  29. Levine, S. and Smith, A.L., Theory of the differential capacity of the oxide/aqueous electrolyte interface, Discuss. Faraday Soc., 1971, vol. 52, p. 290.

    Article  Google Scholar 

  30. Demarconnay, L., Coutanceau, C., and Léger, J.M., Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts—effect of the presence of methanol, Electrochim. Acta, 2004, vol. 49, p. 4513.

    Article  CAS  Google Scholar 

  31. Bard, A.J., Faulkner, L.R., Leddy, J., and Zoski, C.G., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 1980.

    Google Scholar 

  32. Devos, O., Gabrielli, C., and Tribollet, B., Simultaneous EIS and in situ microscope observation on a partially blocked electrode application to scale electrodeposition, Electrochim. Acta, 2006, vol. 51, p. 1413.

    Article  CAS  Google Scholar 

Download references

Funding

This research leading to these results was financially supported by the [Accord-programme algéro-français] under Grant Agreement [Tassili no. 14MDU911].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kahoul.

Ethics declarations

Authors annonce that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khellaf, N., Kahoul, A., Naamoune, F. et al. Impact of the Synthesis Method on Electrochemical Performance of La0.5Sr0.5MnO3 Perovskite Oxide as a Cathode Material in Alkaline Fuel Cells. Russ J Electrochem 58, 10–20 (2022). https://doi.org/10.1134/S1023193522010062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522010062

Keywords:

Navigation