Skip to main content
Log in

Electrodialytic Extraction and Electrodeposition of Copper(II) in Systems with Di(2-Ethylhexyl)Phosphoric-Acid-Based Liquid Membranes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A new process for the copper(II) ion extraction from hydrochloric acid solutions using di(2-ethyl-hexyl)phosphoric-acid-containing liquid membranes with tri-n-octylamine additives under electrodialysis conditions, accompanied with cathodic metal electrodeposition, is presented. The effects of hydrochloric acid and copper(II) concentrations in the feed solution, the organic liquid membrane and the cathodic aqueous solution compositions, as well as the electrodialysis current density and the electrode material, on the extraction and the metal ion electrodeposition rates is studied. The almost complete (96–100%) removal of copper(II) ions by the liquid membranes from the feed solution containing 0.01 M CuCl2 is shown being achieved after 0.5–3.0 h of electrodialysis; it is accompanied by a sharp rise in voltage when operating in the galvanostatic mode. The maximal obtained degree of the copper(II) back-extraction into the cathodic solution is 94%; the maximum electrodeposition degree, 74%. Dense, bright or matte cathodic copper deposits, well adhered to the electrode, are obtained during the electrodeposition from the sulfuric, hydrochloric, perchloric, nitric, and acetic acids’ dilute solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Podchainova, V.N. and Simonova, L.N., The Copper (in Russian), Moscow: Nauka, 1990.

    Google Scholar 

  2. Al-Saydeh, S.A., El-Naas, M.H., and Zaidi, S.J., Copper removal from industrial wastewater: A comprehensive review, J. Industr. Engineer. Chem., 2017, vol. 56, p. 35.

    Article  CAS  Google Scholar 

  3. Dolina, L.F., Modern Techniques and Technologies for Purification of Wastewater from Heavy Metal Salts (in Russian), Dnepropetrovsk: Kontinent, 2008.

    Google Scholar 

  4. Carolin, C.F., Kumar, P.S., Saravanan, A., Joshiba, J., and Naushad, Mu., Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review, J. Environ. Chem. Eng., 2017, vol. 5, no. 3, p. 2782.

    Article  CAS  Google Scholar 

  5. Abdullah, N., Yusof, N., Lau, W.J., Jaafar, J., and Ismail, A.F., Recent trends of heavy metal removal from water/waste water by membrane technologies, J. Industr. Engineer. Chem., 2019, vol. 76, p. 17.

    Article  CAS  Google Scholar 

  6. Chai, W.S., Cheun, J.,Y., Kumar, P.S., Mubashir, M., Majeed, Z., Banat, F., Ho, S.-H., and Show, P.L., A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application, J. Clean. Prod., 2021, no. 126589, in press.

  7. Kislik, V.S. (Ed.), Liquid Membranes. Principles and Applications in Chemical Separations and Wastewater Treatment, Oxford: Elsevier, 2010.

    Google Scholar 

  8. Yaroslavtsev, A.B. (Ed.), Membranes and Membrane Technologies (in Russian), Moscow: Nauchnyi Mir, 2013.

    Google Scholar 

  9. Hao, Z., Li, Q., Ho, W.S.W., and Li, N.N., Liquid Membranes, in Comprehensive Membrane Science and Engineering (2nd Ed.), Drioli, E., Giorno, L., and Fontananova, E. (Eds.), Amsterdam: Elsevier, 2017, vol. 2, p. 411.

    Google Scholar 

  10. Kolev, S.D., Membrane Techniques/Liquid Membranes, in Encyclopedia of Analytical science (3rd Ed.), Worsfold, P., Townsheld, A., Poole, C., and Miro, M. (Eds.), Amsterdam: Elsevier, 2019, p. 1.

    Google Scholar 

  11. Yagodin, G.A., Kagan, S.Z., Tarasov, V.V. et al., Fundamentals of Liquid–Liquid Extraction (in Russian), Moscow: Khimiya, 1981.

    Google Scholar 

  12. Chang, S.H., Teng, T.T., and Norli, I., Cu(II) transport through soybean oil-based bulk liquid membrane: Kinetic study, Chem. Eng. J., 2011, vol. 173, p. 352.

    Article  CAS  Google Scholar 

  13. Kermiche, M. and Djerad, S., Facilitated transport of copper through bulk liquid membrane containing di-2-ethylhexylphosphoric acid, Desalin. Water Treat., 2011, vol. 36, p. 261.

    Article  CAS  Google Scholar 

  14. Venkateswaran, P., Navaneetha Gopalakrishnan, A., and Palanivelu, K., Di(2-ethylhexyl)phosphoric acid—coconut oil supported liquid membrane for the separation of copper ions from copper plating wastewater, J. Environ. Sci. (China), 2007, vol. 19, no. 12, p. 1446.

    Article  PubMed  CAS  Google Scholar 

  15. Ncib, S., Barhoumi, A., Bouguerra, A., Larchet, C., Dammak, L., Hamrouni, B., and Elaloui, E., Copper(II) Removal from Synthetic Wastewater Solutions Using Supported Liquid Membrane and Polymer Inclusion Membrane, J. Environ. Eng., 2020, vol. 146, no. 2.

  16. Fouad, E.A., Zinc and Copper Separation through an Emulsion Liquid Membrane Containing Di-(2-Ethylhexyl) Phosphoric Acid as a Carrier, Chem. Eng. Technol., 2008, vol. 31, no. 3, p. 370.

    Article  CAS  Google Scholar 

  17. Chiha, M., Hamdaoui, O., Ahmedchekkat, F., and Pétrier, C., Study on ultrasonically assisted emulsification and recovery of copper(II) from wastewater using an emulsion liquid membrane process, Ultrason. Sonochem., 2010, vol. 17, p. 318.

    Article  PubMed  CAS  Google Scholar 

  18. Azarang, A., Rahbar-Kelishami, A., Norouzbeigi, R., and Shayesteh, H., Modelling and optimization of pertraction performance of heavy metal ion from aqueous solutions using M2EHPA/D2EHPA: Application of response surface methodology, Environ.Technol. Innov., 2019, vol. 15, no. 100432.

  19. Zereshki, S., Shokri, A., and Karimi, A., Application of a green emulsion liquid membrane for removing copper from contaminated aqueous solution: extraction, stability and breakage study using response surface methodology, J. Molec. Liq., 2021, vol. 325, no. 115251.

  20. Zhang, W., Cui, C., and Hao, Z., Transport Study of Cu(II) Through Hollow Fiber Supported Liquid Membrane, Chin. J. Chem. Eng., 2010, vol. 18, no.1, p. 48.

    Article  Google Scholar 

  21. Chang, S.H., Parametric studies on an innovative waste vegetable oil-based continuous liquid membrane (WVCLM) for Cu(II) ion separation from aqueous solutions, J. Ind. Eng. Chem., 2017, vol. 50, p. 102.

    Article  ADS  CAS  Google Scholar 

  22. Purin, B.A., Electrochemical extraction method for obtaining highly pure metals and their compounds, Izvestiya AN LatvSSR. Ser. Chim. (in Russian), 1971, no. 5, p.31.

  23. Kizim, N.F., The works of B.A. Purin and his scientific school on electrodialysis, in: Extraction and Membrane Methods in the Separation of Substances: Abstracts, Int. Conf. dedicated to the 90th birthday of Academician B.A. Purin, Yurtov, E.V. (Ed.), (in Russian), Moscow: Mendeleev Univ. Chem. Technol., p. 7.

  24. Sadyrbaeva, T.Zh. and Purin, B.A., Membrane extraction of copper(II) by di(2-ethylhexyl)phosphoric acid under electrodialysis conditions, Khimicheskaya Tekhnologiya (in Russian), 2000, no. 11, p. 23.

  25. Sadyrbaeva, T.Zh. and Purin, B.A., Membrane extraction and separation of copper(II) and palladium(II) under electrodialysis conditions, Khimicheskaya Tekhnologiya (in Russian), 2001, no. 10, p. 17.

  26. Qian, Z., Miedema, H., Sahin, S., de Smet, L.C.P.M., and Judholter, E.J.R., Separation of alkali metal cations by a supported liquid membrane (SLM) operating under electrodialysis (ED) conditions, Desalination, 2020, vol. 495, no. 114631.

  27. Zhao, Z., Liu, G., Jia, H., and He, L., Sandwiched liquid-membrane electrodialysis: Lithium selective recovery from salt lake brines with high Mg/Li ratio, J. Membr. Sci., 2020, vol. 596, no. 117685.

  28. Sadyrbaeva, T.Zh., Liquid membrane system for extraction and electrodeposition of silver(I), J. Electroanal. Chem., 2010, vol. 648, no. 2, p. 105.

    Article  CAS  Google Scholar 

  29. Sadyrbaeva, T.Zh., Electrodialysis Extraction and Electrodeposition of Lead(II) in Systems with Liquid Membranes, Russ. J. Electrochem., 2018, vol. 54, p. 922.

    Article  CAS  Google Scholar 

  30. Fornea, V., Trupina, S., Iosub, A.V., and Bulgariu, L., Spectrophotometric determination of Cu(II), Co(II) and Ni(II) ions in mono and multi-component systems, Bul. Inst. Polit. Iasi, 2016, vol. 62, p. 9.

    Google Scholar 

  31. Mikhailov, V.A., Chemistry of Extraction of Metals by Dialkyl Phosphoric Acids and Their Salts, In: Modern Problems of Extraction Chemistry and Technology (in Russian), Moscow: Russ. Akad. Nauk, 1999. vol. 1, p. 72.

    Google Scholar 

  32. Kholkin, A.I., Belova, V.V., Pashkov, G.L., et al., Solvent binary extraction, J. Molec. Liq., 1999, vol. 82, nos. 1–2, p. 131.

    Article  CAS  Google Scholar 

  33. Ivakhno, S.Yu. and Yurtov, E.V., Membrane Extraction (in Russian), Moscow: VINITI, 1990.

    Google Scholar 

  34. Golubev, V.N. and Purin, B.A., Investigation of the Electrical Breakdown of the Liquid Membranes during Anions Transfer, Doklady AN SSSR (in Russian), 1977, vol. 232, no. 6, p. 1340.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Zh. Sadyrbaeva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadyrbaeva, T.Z. Electrodialytic Extraction and Electrodeposition of Copper(II) in Systems with Di(2-Ethylhexyl)Phosphoric-Acid-Based Liquid Membranes. Russ J Electrochem 57, 1164–1174 (2021). https://doi.org/10.1134/S1023193521120053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521120053

Keywords:

Navigation