Skip to main content
Log in

Increasing the Electrochemical Activity of the Interface Pr1.95La0.05CuO4/Porous Ce0.9Gd0.1O1.95 Layer by Infiltrating Pr6O11

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties are studied for the electrode with multilayered structure involving the current-collecting Pr1.95La0.05CuO4 layer (PLCO) and the porous Ce0.9Gd0.1O1.95 (GDC) layer modified by Pr6O11. The ratio of initial components (GDC/pore-forming agent) used in formation of the porous GDC layer is optimized in order to prepare the electrode with the high electrochemical activity in the oxygen reduction reaction. It is shown that the transition to the multilayered structure makes it possible to decrease the polarization resistance (Rη) of the PLCO-based electrode by one order of magnitude as compared with the original unmodified electrode and reach Rη = 0.16 Ω cm2 at 650°С in air. Based on the results of a systematic study aimed at the development of the step-by-step procedure of formation of the multilayered structure of the PLCO-based cathode for solid-oxide fuel cells (SOFC), it is shown that the proposed approach allows synthesizing the SOFC cathodic layers suitable of functioning in the intermediate temperature interval of 500–800°С and allowing the high electrochemical activity of the electrode in the oxygen reduction reaction to be reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Connor, P.A., Yue, X., Savaniu, C.D., Price, R., Triantafyllou, G., Cassidy, M., Kerherve, G., Payne, D.J., Maher, R.C., Cohen, L.F., Tomov, R.I., Glowacki, B.A., Kumar, R.V., and Irvine J.T.S., Tailoring SOFC electrode microstructures for improved performance, Adv. Energy Mater., 2018, vol. 8, p. 1800120.

    Article  Google Scholar 

  2. Cassidy, M., Trends in the processing and manufacture of solid oxide fuel cells, Wiley Interdiscip. Rev.: Energy Environ., 2017. vol. 6, p. e248.

    Google Scholar 

  3. Abdalla, A.M., Hossain, S., Azad, A.T., Petra, P.M.I., Begum, F., Eriksson, S.G., and Azad, A.K., Nanomaterials for solid oxide fuel cells: a review, Renewable Sustainable Energy Rev., 2018, vol. 82, p. 353.

    Article  CAS  Google Scholar 

  4. Gao, Z., Mogni, L.V., Miller, E.C., Railsback, J.G., and Barnett, S., A perspective on low-temperature solid oxide fuel cells, Energy Environ. Sci., 2016, vol. 9, p. 1602.

    Article  CAS  Google Scholar 

  5. Kilner, J.A. and Burriel, M., Materials for intermediate-temperature solid-oxide fuel cells, Annu. Rev. Mater. Res., 2014, vol. 44, p. 365.

    Article  CAS  Google Scholar 

  6. Chrzan, A., Karczewski, J., Gazda, M., Szymczewska, D., and Jasinski, P., La0.6Sr0.4Co0.2Fe0.8O3 – δ oxygen electrodes for solid oxide cells prepared by polymer precursor and nitrates solution infiltration into gadolinium doped ceria backbone, J. Eur. Ceram. Soc., 2017, vol. 37, p. 3559.

    Article  CAS  Google Scholar 

  7. Giuliano, A., Carpanese, M.P., Clematis, D., Boaro, M., Pappacena, A., Deganello, F., Liotta, L.F., and Barbuccia, A., Infiltration, overpotential and ageing effects on cathodes for solid oxide fuel cells: La0.6Sr0.4Co0.2Fe0.8O3 – δ versus Ba0.5Sr0.5Co0.8Fe0.2O3 – δ, J. Electrochem. Soc., 2017, vol. 164, p. F3114.

    Article  CAS  Google Scholar 

  8. Ding, D., Li, X., Lai, S.Y., Gerdes, K., and Liu, M., Enhancing SOFC cathode performance by surface modification through infiltration, Energy Environ. Sci., 2014, vol. 7, p. 552.

    Article  CAS  Google Scholar 

  9. Yoon, K.J., Biswas, M., Kim, H., Park, M., Hong, J., Kim, H., Son, J., Lee, J., Kim, B., and Lee, H., Nano-tailoring of infiltrated catalysts for high-temperature solid oxide regenerative fuel cells, Nano Energy, 2017, vol. 36, p. 9.

    Article  CAS  Google Scholar 

  10. Chrzan, A., Ovtar, S., Jasinski, P., Chen, M., and Hauch, A., High performance LaNi1 – xCoxO3 – δ (x = 0.4 to 0.7) infiltrated oxygen electrodes for reversible solid oxide cells, J. Power Sources, 2017, vol. 353, p. 67.

    Article  CAS  Google Scholar 

  11. Nicollet, C., Flura, A., Vibhu, V., Rougier, A., Bassat, J.M., and Grenier, J.C., La2NiO4 + δ infiltrated into gadolinium doped ceria as novel solid oxide fuel cell cathodes: Electrochemical performance and impedance modelling, J. Power Sources, 2015, vol. 294, p. 473.

    Article  CAS  Google Scholar 

  12. Railsback, J.G., Gao, Z, and Barnett, S.A., Oxygen electrode characteristics of Pr2NiO4 + δ-infiltrated porous (La0.9Sr0.1)(Ga0.8Mg0.2)O3 – δ, Solid State Ionics, 2015, vol. 274, p. 134.

    Article  CAS  Google Scholar 

  13. Taguchi, H., Chiba, R., Komatsu, T., Orui, H., Watanabe, K., and Hayashi, K., LNF SOFC cathodes with active layer using Pr6O11 or Pr-doped CeO2, J. Power Sources, 2013, vol. 241, p. 768.

    Article  CAS  Google Scholar 

  14. Vshivkova, A.I. and Gorelov, V.P., Activation of oxygen reaction by praseodymium oxide film on platinum electrode in contact with YSZ electrolyte, Russ. J. Electrochem., 2016, vol. 52. p. 488.

    Article  CAS  Google Scholar 

  15. Ding, X., Zhu, W., Hua, G., Li, J., and Wu, Z., Enhanced oxygen reduction activity on surface-decorated perovskite La0.6Ni0.4FeO3 cathode for solid oxide fuel cells, Electrochim. Acta, 2015, vol. 163, p. 204.

    Article  CAS  Google Scholar 

  16. Navarrete, L., Solis, C., and Serra, J.M., Boosting the oxygen reduction reaction mechanisms in IT-SOFC cathodes by catalytic functionalization, J. Mater. Chem. A, 2015, vol. 3, p. 16440.

    Article  CAS  Google Scholar 

  17. Lyskov, N.V., Kaluzhskikh, M.S., Leonova, L.S., Mazo, G.N., Istomin, S.Ya., and Antipov, E.V., Electrochemical characterization of Pr2CuO4 cathode for IT-SOFC, Int. J. Hydrogen Energy, 2012, vol. 37, p. 18357.

    Article  CAS  Google Scholar 

  18. Sun, C., Li, Q., Sun, L., Zhao, H., and Huo, L., Characterization and electrochemical performances of Pr2CuO4 as a cathode material for intermediate temperature solid oxide fuel cells, Mat. Res. Bull, 2014, vol. 53, p. 65.

    Article  CAS  Google Scholar 

  19. Kolchina, L.M., Lyskov, N.V., Petukhov, D.I., and Mazo, G.N., Electrochemical characterization of Pr2CuO4–Ce0.9Gd0.1O1.95 composite cathodes for solid oxide fuel cells, J. Alloys Compds., 2014, vol. 605, p. 89.

    Article  CAS  Google Scholar 

  20. Mazo, G.N., Kazakov, S.M., Kolchina, L.M., Istomin, S.Ya., Antipov, E.V., Lyskov, N.V., Galin, M.Z., Leonova, L.S., Fedotov, Yu.S., Bredikhin, S.I., Liu, Yi, Svensson, G., and Shen, Z., Influence of structural arrangement of R2O2 slabs of layered cuprates on high-temperature properties important for application in IT-SOFC, Solid State Ionics, 2014, vol. 257, p. 67.

    Article  CAS  Google Scholar 

  21. Kolchina, L.M., Lyskov, N.V., Kazakov, S.M., Mazo, G.N., and Antipov, E.V., Drastic change of electrical conductivity in Pr2CuO4 by isovalent La doping, RSC Adv., 2015, vol. 5, p. 91993.

    Article  CAS  Google Scholar 

  22. Kolchina, L.M., Lyskov, N.V., Kuznetsov, A.N., Kazakov, S.M., Galin, M.Z., Meledin, A., Abakumov, A.M., Bredikhin, S.I., Mazo, G.N., and Antipov, E.V., Evaluation of Ce-doped Pr2CuO4 for potential application as a cathode material for solid oxide fuel cells, RSC Adv., 2016, vol. 6, p. 101029.

    CAS  Google Scholar 

  23. Lyskov, N.V., Kolchina, L.M., Galin, M.Z., and Mazo, G.N., Development of lanthanum-doped praseodymium cuprates as cathode materials for intermediate-temperature solid oxide fuel cells, Solid State Ionics, 2018, vol. 319, p. 156–161.

    Article  CAS  Google Scholar 

  24. Khandale, A.P., Pahune, B.S., Bhoga, S.S., Kumar, R.V., and Tomov, R., Development of Pr2 – xSrxCuO4 ± δ mixed ion-electron conducting system as cathode for intermediate temperature solid oxide fuel cell, Int. J. Hydrogen Energy, 2019, vol. 44, p. 15417.

    Article  CAS  Google Scholar 

  25. Hayashi, H., Kanoh, M., Quan, C.J., Inaba, H., Wang, S., Dokiya, M., and Tagawa, H., Thermal expansion of Gd-doped ceria and reduced ceria, Solid State Ionics, 2000, vol. 132, p. 227.

    Article  CAS  Google Scholar 

  26. Jiang, S. and Wang, W., Fabrication and performance of GDC-impregnated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells, J. Electrochem. Soc., 2005, vol. 152, p. A1398.

    Article  CAS  Google Scholar 

  27. Zhao, F., Peng, R., and Xia, C., LSC-based electrode with high durability for IT-SOFCs, Fuel Cells Bull., 2008, vol. 2008, p. 12.

    Article  Google Scholar 

  28. Ren, Y., Cheng, Y., Gorte, R.J., and Huang, K., Toward stabilizing Co3O4 nanoparticles as an oxygen reduction reaction catalyst for intermediate-temperature SOFCs, J. Electrochem. Soc., 2017, vol. 164, p. F3001.

    Article  CAS  Google Scholar 

  29. Shah, M. and Barnett, S.A. Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3 – δ into Gd-Doped Ceria, Solid State Ionics, 2008, vol. 179, p. 2059.

    Article  CAS  Google Scholar 

  30. Nicholas, J.D. and Barnett, S.A., Measurements and modeling of Sm0.5Sr0.5CoO3 – x–Ce0.9Gd0.1O1.95 SOFC cathodes produced using infiltrate solution additives, J. Electrochem. Soc., 2010, vol. 157, p. B536.

    Article  CAS  Google Scholar 

  31. Nicollet, C., Flura, A., Vibhu, V., Fourcade, S., Rougier, A., Bassat, J.M., and Grenier, J.C., Preparation and characterization of Pr2NiO4 + δ infiltrated into Gd-doped ceria as SOFC cathode, J. Solid State Electrochem., 2016, vol. 20, p. 2071.

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the Russian Foundation for Basic Research (grant no. 20-08-00454). The synthesis of materials was carried out within the frames of the State Task for the Institute of Problems of Chemical Physics of the Russian Academy of Sciences no. 0089-2019-0007 (State Registration no. АААА-А19-119061890019-5). The SEM studies were carried out with the use of equipment of the Center of Collective Use of Physical Research Methods at the Institute of General and Inorganic Chemistry of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Lyskov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyskov, N.V., Galin, M.Z., Napol’skii, K.S. et al. Increasing the Electrochemical Activity of the Interface Pr1.95La0.05CuO4/Porous Ce0.9Gd0.1O1.95 Layer by Infiltrating Pr6O11. Russ J Electrochem 57, 1070–1077 (2021). https://doi.org/10.1134/S1023193521100086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521100086

Keywords:

Navigation