Skip to main content
Log in

Synthesis of Palladium Nanoribbons and Their Application in Electrochemical Detection of Hemoglobin

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A trustworthy and simple electrode is fabricated using palladium nanoribbons for the determination of hemoglobin. Palladium nanoparticles were synthesised from M. acuminata fruit, which were self assembled to form palladium nanoribbons. Physical characterization of the modified electrode was carried out with the help of X-ray diffraction, scanning electron microscope and electrochemical impedance spectroscopy techniques. The electrochemical properties of the developed sensor towards the detection of hemoglobin were examined using cyclic voltammetry and chronoamperometry. By determining hemoglobin at ‒351 mV, the modified electrode confirms that it is highly sensitive. The response time and low detection limit is found to be 2 s and 0.039 µM, respectively, for hemoglobin. The proposed electrode also exhibits stability and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Li, Q., Li, H., Pol, V.G., et al., Sonochemical synthesis, structural and magnetic properties of air-stable Fe/Co alloy nanoparticles, New J. Chem., 2003, vol. 27, p. 1194.

    Article  CAS  Google Scholar 

  2. Petla, R.K., Vivekanandhan, S., Misra, M., Mohanty, A.K., and Satyanarayana, N., Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J. Biomater. Nanobiotechnol., 2012, vol. 3, p. 14.

    Article  CAS  Google Scholar 

  3. Shruthi, C.D. and Suresh, G.S., Reduced MWCNTs/palladium nanotubes hybrid fabricated on graphite electrode for simultaneous detection of ascorbic acid, dopamine and uric acid, J. Electrochem. Soc., 2018, vol. 165, no. 10, p. B458.

    Article  CAS  Google Scholar 

  4. Sumathy, V., Lachumy, S.J., Zakaria, Z., and Sasidharan, S., In vitro bioactivity and phytochemical screening of musa acuminata flower, Pharmacologyonline, 2011, vol. 2, p. 118.

    Google Scholar 

  5. Wuyts, N., Waele, D.D., and Swennen, R., Extraction and partial characterization of polyphenol oxidase from banana (Musa acuminata Grande naine) roots, Plant Physiol. Biochem., 2006, vol. 44, p. 308.

    Article  CAS  Google Scholar 

  6. Hsouna, A.B. and Hamdi, N., Pelargonium graveolens aqueous decoction: a new water-soluble polysaccharide and antioxidant-rich extract, Lipids Health Disease, 2012, vol. 11, p. 167.

    Article  Google Scholar 

  7. Xin Qi, Tonnam Balankura, Ya Zhou, and Fichthorn, K.A., Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires, Nano Lett., 2017, vol. 17, no. 2, p. 312.

    Google Scholar 

  8. Simancas, R., Dari, D., Velamazán, N., Navarro, M.T., Cantín, A., Jordá, J.L., and Sastre, G., Modular organic structure-directing agents for the synthesis of zeolites, Science, 2010, vol. 330, p. 1219.

    Article  CAS  Google Scholar 

  9. Sun, L., Zhang, Y., Li, J., Yi, T., and Yang, X., Graphene-oxide-directed hydrothermal synthesis of ultralong M(VO3)n composite nanoribbons, Chem. Mater., 2016, vol. 28, no. 13, p. 4815.

    Article  CAS  Google Scholar 

  10. Hussain, K.K., Moon, J.M., Park, D.S., and Shim, Y.B., Detection of hemoglobin using hybrid molecularly imprinted polymers/carbon quantum dots-based nanobiosensor prepared from surfactant-free Pickering emulsion, electrochemical detection of hemoglobin, Electroanalysis, 2017, vol. 29, p. 2190.

    Article  CAS  Google Scholar 

  11. Dai, Z., Liu, S., Ju, H., and Chen, H., Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix, Biosens. Bioelectron., 2014, vol. 19, p. 861.

    Article  Google Scholar 

  12. Sankaran, V.G. and Weiss, M.J., Anemia: progress in molecular mechanisms and therapies, Nat. Med., 2015, vol. 21, p. 221.

    Article  CAS  Google Scholar 

  13. Mayer, T.K. and Freedman, Z.R., Protein glycosylation in diabetes mellitus: a review of laboratory measurements and of their clinical utility, Clin. Chim. Acta, 1983, vol. 127, p. 147.

    Article  CAS  Google Scholar 

  14. Gralnek, I.M., Barkun, A.N., and Bardou, M., Management of acute bleeding from a peptic ulcer, N. Engl. J. Med., 2008, vol. 359, p. 928.

    Article  CAS  Google Scholar 

  15. Landefeld, C.S. and Beyth, R.J., Anticoagulant-related bleeding: clinical epidemiology, prediction, and prevention, Am. J. Med., 1993, vol. 95, p. 315.

    Article  CAS  Google Scholar 

  16. Lee, T., Choi, J.W., et al., Insulin in the nervous system and the mind: functions in metabolism, memory, and mood, Sensors, 2016, vol. 16, p. 660.

    Article  Google Scholar 

  17. Scheibe, B., Borowiak-Palen, E., and Kalenczuk, R.J., Oxidation and reduction of multiwalled carbon nanotubes, Mater. Charact., 2010, vol. 61, p. 185.

    Article  CAS  Google Scholar 

  18. Xing, Y., Cheng, R., Li, H., Liu, Z., and Du, C., Mannitol-assisted synthesis of ultrathin Bi2MoO6 architectures: excellent selective adsorption and photocatalytic performance, J. Nanopart. Res., 2019, vol. 21, no. 2.

  19. Sheny, D.S., Philip, D., and Mathew, J., Rapid green synthesis of palladium nanoparticles using the dried leaf of anacardium occidentale, Spectrochim. Acta, Part A, 2012, vol. 91, p. 35.

    Article  CAS  Google Scholar 

  20. Palanisamy, S., Ezhil Vilian, A.T., and Chen Shen-Ming, Direct electrochemistry of glucose oxidase at reduced graphene oxide/zinc oxide composite modified electrode for glucose sensor, Int. J. Electrochem. Sci., 2012, vol. 7, p. 2153.

    CAS  Google Scholar 

  21. Huang, F., Peng, Y., Jin, G., and Zhang, S., Sensitive detection of haloperidol and hydroxyzine at multi-walled carbon nanotubes–modified glassy carbon electrodes, Sensors, 2008, vol. 8, p. 1879.

    Article  CAS  Google Scholar 

  22. Brett, C.M.A., Inzelt, G., and Kertesz, V., Methylene blue/multiwall carbon nanotube modified electrode for the amperometric determination of hydrogen peroxide, Anal. Chim. Acta, 1999, vol. 385, p. 119.

    Article  CAS  Google Scholar 

  23. Tatikonda, A.K., Tkachev, M., and Naaman, R., A highly sensitive hybrid organic–inorganic sensor for continuous monitoring of hemoglobin, Biosens. Bioelectron., 2013, vol. 45, p. 201.

    Article  CAS  Google Scholar 

  24. Zhu, Z. and Li, N.-Q., Electrochemical studies of 9,10-anthraquinone interacting with hemoglobin and determination of haemoglobin, Microchim. Acta, 1999, vol. 130, p. 301.

    Article  CAS  Google Scholar 

  25. Majidi, M.R., Saadatirad, A., and Alipour, E., Voltammetric determination of hemoglobin using a pencil lead electrode, Electroanalysis, 2011, vol. 23, p. 1984.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to Sri. A.V.S. Murthy, honorary secretary, Rashtreeya Sikshana Samiti Trust, Bangalore and Dr Snehalatha Nadiger, Principal, NMKRV College for Women, Bangalore for their continuous support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurukar Shivappa Suresh.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnakurli Dwarakanath Shruthi, Gurukar Shivappa Suresh Synthesis of Palladium Nanoribbons and Their Application in Electrochemical Detection of Hemoglobin. Russ J Electrochem 57, 380–387 (2021). https://doi.org/10.1134/S102319352104008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352104008X

Keywords:

Navigation