Skip to main content
Log in

Electrochemical Characteristics of Modified Heterogeneous Bipolar Membrane and Electromembrane Process of Nitric Acid and Sodium Hydroxide Recuperation from Sodium Nitrate and Boric Acid Solution

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Characteristics of an аMB-2m bipolar membrane containing ion-polymer with phosphoric-acid groups, catalytically active in the water dissociation reaction, were studied by the electrochemical-impedance spectroscopy. The study is carried out in 0.1 М nitric acid–0.1 М sodium hydroxide system. The аMB-2m membrane bipolar region resistance is shown to be an order of magnitude less than that of the MB-1 and MB‑2 commercial membranes. The process of nitric acid and sodium hydroxide production from 0.5 М sodium nitrate solution, as well as from 0.5 М sodium nitrate solution containing 0.75 М boric acid is studied in an electrodialysis apparatus with three-chamber unit cells comprised of Ralex CMH cation-exchange membrane, аMB-2m bipolar membrane, and Ralex AMH anion-exchange membrane. The electrochemical characteristics (the current efficiency, the specific energy consumption, and the specific productivity) are shown to remain unchanged in the presence of boric acid, its transfer into the acid and alkali chambers of the electrodialyzer does not exceed 7%. A probable mechanism of the boric acid and borate ion transfer through the ion-exchange membranes into the acid and alkali chambers is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. International Program on Chemical Safety. Environmental Health Criteria for Boron, Geneva: World Health Organization, 1998, vol. 204.

  2. Kot, F.S., Boron in the Environment, in Boron Separation Processes, Kabay, N., Bryjak, M., and Hilal, N., Eds., Amsterdam: Elsevier, 2015, p. 1.

    Google Scholar 

  3. Weinthal, E., Parag, Y., Vengosh, A., Muti, A., and Kloppmann, W., The EU drinking water directive: The boron standard and scientific uncertainty, Eur. Environ., 2005, vol. 15, p. 1.

    Article  Google Scholar 

  4. Sanitary Rules and Regulations 2.1.4.1074-01. Drinking Water. Hygienic Requirements for Water Quality of Centralized Drinking Water Supply Systems. Quality Control. Hygienic Requirements for Ensuring the Safety of Hot Water Systems, Moscow: Ministry of Health of Russia, 2002.

  5. Sanitary Rules and Regulations 2.1.4.1116-02. Potable Water. Hygienic Requirements for Quality of Bottled Water. Quality Control, Moscow: Ministry of Health of Russia, 2002.

  6. Princi, M.P., Lupini, A., Araniti, F., Longo, C., Mauceri, A., Sunseri, F., and Abenavoli, M.R., Boron toxicity and tolerance in plants: Recent advances and future perspectives, in Plant Metal Interaction, Parvaiz Ahmad, Ed., Amsterdam: Elsevier, 2016, p. 115.

    Google Scholar 

  7. Roessner, U., Patterson, J., Forbes, M., Fincher, G., Langridge, P., and Bacic, A., An investigation of boron toxicity in barley using metabolomics, Plant Physiol., 2006, vol. 142, p. 1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chatzissavvidis, C. and Antonopoulou, C., Boron toxicity in fruit crops: Agronomic and physiological implications, in Fruit Crops: Diagnosis and Management of Nutrient Constraints, Srivastava, A.K. and Hu, C., Eds., Amsterdam: Elsevier, 2020, p. 211.

    Google Scholar 

  9. Schoderboeck, L., Mühlegger, S., Losert, A., Gausterer, C., and Hornek, R., Effects assessment: Boron compounds in the aquatic environment, Chemosphere, 2011, vol. 82, p. 483.

    Article  CAS  PubMed  Google Scholar 

  10. Fail, P., Chapin, R., Price, C., and Heindel, J., General reproductive, developmental, and endocrine toxicity of boronated compounds, Reprod. Toxicol., 1998, vol. 12, p. 1.

    Article  CAS  PubMed  Google Scholar 

  11. Boron in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. Geneva: World Health Organization, 1998. 2009.

  12. Smith, B.M., Todd, P., and Bowman, C., Boron removal by polymer-assisted ultrafiltration, Separ. Sci. Technol., 1995, vol. 30, p. 3849.

    Article  CAS  Google Scholar 

  13. Melnik, L., Vysotskaja, O., and Kornilovich, B., Boron behavior during desalination of sea and underground water by electrodialysis, Desalination, 1999, vol. 124, p. 125.

    Article  CAS  Google Scholar 

  14. Melnyk, L., Goncharuk, V., Butnyk, I., and Tsapiuk, E., Boron removal from natural and wastewaters using combined sorption/membrane process, Desalination, 2005, vol. 185, p. 147.

    Article  CAS  Google Scholar 

  15. Turek, M., Dydo, P., Ciba, J., Trojanowska, J., Kluczka, J., and Palka-Kupczak, B., Electrodialytic treatment of boron-containing wastewater with univalent permselective membranes, Desalination, 2005, vol. 185, p. 139.

    Article  CAS  Google Scholar 

  16. Oren, Y., Linder, C., Daltrophe, N., Mirsky, Y., Skorka, J., and Kedem, O., Boron removal from desalinated seawater and brackish water by improved electrodialysis, Desalination, 2006, vol. 199, p. 52.

    Article  CAS  Google Scholar 

  17. Jacob, C., Seawater desalination: boron removal by ion exchange technology, Desalination, 2007, vol. 205, p. 47.

    Article  CAS  Google Scholar 

  18. Cengeloglu, Y., Arslan, G., Tor, A., Kocak, I., and Dursun, N., Removal of boron from water by using reverse osmosis, Sep. Purif. Technol., 2008, vol. 64, p. 141.

    Article  CAS  Google Scholar 

  19. Tu, K.L., Ngheim, L.D., and Chivas, A.R., Boron removal by reverse osmosis membranes in seawater desalination applications, Sep. Purif. Technol., 2010, vol. 75, p. 87.

    Article  CAS  Google Scholar 

  20. Hilal, N., Kim, G.J., and Somerfield, C., Boron removal from saline water: A comprehensive review, Desalination, 2011, vol. 273, p. 23.

    Article  CAS  Google Scholar 

  21. Kir, E., Gurler, B., and Gulec, A., Boron removal from aqueous solution by using plasma-modified and unmodified anion-exchange membranes, Desalination, 2011, vol. 267, p. 114.

    Article  CAS  Google Scholar 

  22. Wolska, J. and Bryjak, M., Methods for boron removal from aqueous solutions—a review, Desalination, 2013, vol. 310, p. 18.

    Article  CAS  Google Scholar 

  23. Tagliabue, M., Reverberi, A.P., and Bagatin, R., Boron removal from water: needs, challenges and perspectives, J. Clean. Prod., 2014, vol. 77, p. 56.

    Article  CAS  Google Scholar 

  24. Wang, B., Guo, X., and Bai, P., Removal technology of boron dissolved in aqueous solutions—A review, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014, vol. 444, p. 338.

    Article  CAS  Google Scholar 

  25. Guan, Z., Lv, J., Bai, P., and Guo, X., Boron removal from aqueous solutions by adsorption—A review, Desalination, 2016, vol. 383, p. 29.

    Article  CAS  Google Scholar 

  26. Tang, Y. P., Luo, L., Thong, Z., and Chung, T.S., Recent advances in membrane materials and technologies for boron removal, J. Membr. Sci., 2017, vol. 541, p. 434.

    Article  CAS  Google Scholar 

  27. Demkin, V.I., Adamovich, D.V., Amelin, V.S., and Panteleev, V.I., Membrane technology for the processing of salt liquid radioactive solutions, Seriya. Kriticheskiye tekhnologii. Membrany (in Russian), 2002, no. 15, p. 10.

  28. Panteleev, V.I., Demkin, V.I., and Adamovich, D.V., Sorption-membrane technologies for the processing of radioactive solutions, Bezopasnost’ okruzhayushchey sredy (in Russian), 2008, no. 3, p. 82.

  29. Watanabe, S., Ogi, H., Araia, Y., Aihara, H., Takahatake, Y., Shibata, A., Nomura, K., Kamiya, Y., Asanuma, N., Matsuura, H., Kubota, T., Seko, N., Arai, T., and Moriguchi, T., STRAD project for systematic treatments of radioactive liquid wastes generated in nuclear facilities, Progress Nuclear Energy, 2019, vol. 117, p. 103090.

    Article  CAS  Google Scholar 

  30. Chechel’nitskij, G.M., Rabinovich, S.M., Sinjavskij, P.N., Kim, V.V., Tereshchenko, L.I., and Bessonov, O.V., RF Patent 2012076, 1994.

  31. Asenov, V.V., US Patent 7323613, 2008.

  32. Zakrzewska-Trznadel, G., Advances in membrane technologies for the treatment of liquid radioactive waste, Desalination, 2013, vol. 321, p. 119.

    Article  CAS  Google Scholar 

  33. Ivanenko, V.I., Sedneva, T.A., Lokshin, E.P., and Korneykov, R.I., RF Patent 2141642, 2017.

  34. Dmitriyev, S.A., Lifanov, F.A., Savkin, A.Ye., and Lashchenkov, S.M., Treatment of distillation residues of nuclear power plants, Atomnaya energiya (in Russian), 2000, no. 89, p. 365.

  35. Nagasawa, H., Iizuka, A., Yamasaki, A., and Yanagisawa, Y., Utilization of bipolar membrane electrodialysis for the removal of boron from aqueous solution, Ind. Eng. Chem. Res., 2011, vol. 50, p. 6325.

    Article  CAS  Google Scholar 

  36. Bunani, S., Arda, M., Kabay, N., Yoshizuka, K., and Nishihama, S., Effect of process conditions on recovery of lithium and boron from water using bipolar membrane electrodialysis (BMED), Desalination, 2017, vol. 416, p. 10.

    Article  CAS  Google Scholar 

  37. Noguchi, M., Nakamura, Y., Shoji, T., Iizuka, A., and Yamasaki, A., Simultaneous removal and recovery of boron from wastewater by multi-step bipolar membrane electrodialysis, J. Water Process Eng., 2018, vol. 23, p. 299.

    Article  Google Scholar 

  38. İpekçia, D., Kabay, N., Bunani, S., Altıok, E., Arda, M., Yoshizuka, K., and Nishihama, S., Application of heterogeneous ion exchange membranes for simultaneous separation and recovery of lithium and boron from aqueous solution with bipolar membrane electrodialysis (EDBM), Desalination, 2020, vol. 479, p. 114313.

    Article  CAS  Google Scholar 

  39. Svitsov, A.A. and Saltykov, B.V., Obtaining valuable components from deactivated wastewater, Proc. Int. Conf. dedic. to the 90th birthday of acad. B.A. Purin (in Russian), Moscow: Mendeleev Ros. Khim.-Tech. Univ., 2018, p. 111.

  40. Egorov, E.N., Svitsov, A.A., Dudnik, S.N., and Demkin, V.I., Fractionation of multicomponent solutions by electrodialysis with bipolar membranes, Petr. Chem., 2012, vol. 57, p. 583.

    Article  CAS  Google Scholar 

  41. Tanaka, Y., Ion exchange membranes, Fundamentals and Applications, 2nd Ed., Elsevier Science, 2015, p. 531.

    Google Scholar 

  42. Ishibashi, N. and Hirano, K., Preparation of caustic soda and hydrochloric acid by use of bipolar ion-exchange membrane, J. Electrochem. Soc. Japan, 1959, vol. 26, no. 1–3, p. 8.

    Article  Google Scholar 

  43. Greben’, V.P. and Rodzik, I.T., Effect of the concentration of hydrochloric acid and sodium hydroxide on the numbers of ion transfer through heterogeneous bipolar ion-exchange membranes, Ionnyy Obmen Khromatografiya (in Russian), 1984, p. 158.

    Google Scholar 

  44. Greben’, V.P., Pivovarov, N.Ya., and Latskov, V.L., Production of concentrated caustic soda and hydrochloride acid solutions from sodium chloride by electrodialysis with the aid of bipolar ion-exchange membranes, Sov. J. Appl. Chem., 1988, vol. 61, no. 5, p. 903.

    Google Scholar 

  45. Carmen, C., Pilot performance of Tokuyama soda bipolar membrane in sodium chloride salt splitting, Membr. Technol., 1993, vol. 41, p. 5.

    Google Scholar 

  46. Bobrinskaya, G.A. and Bobreshova, O.V., Preparation of acid and alkali from sodium chloride of varied concentration in four-chamber electrodialyzer with bipolar membranes, Russ. J. Appl. Chem., 2000, vol. 73, no. 2, p. 241.

    Google Scholar 

  47. Yang, Y., Gao, X., Fan, A., Fu, L., and Gao, C., An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis, J. Membr. Sci., 2014, vol. 449, p. 119.

    Article  CAS  Google Scholar 

  48. Bobrinskaya, G.A., Pavlova, T.V., and Shatalov, Ya.A., Recovery of acids and sodium hydroxide from solutions of sodium sulfate and sodium chloride with the use of bipolar membranes, Sov. J. Appl. Chem., 1985, vol. 58, p. 711.

    Google Scholar 

  49. Raucq, D., Pourcelly, G., and Gavach, C., Production of sulphuric acid and caustic soda from sodium sulphate by electromembrane processes. Comparison between electro-electrodialysis and electrodialysis on bipolar membrane, Desalination, 1993, vol. 91, no. 2, p. 163.

    Article  CAS  Google Scholar 

  50. Pinacci, P., Development of electro-membrane processes for waste-stream treatment, Membr. Technol., 2001, vol. 134, p. 11.

    Article  Google Scholar 

  51. Berkessa, Y.W., Lang Q., Yan, B., Kuang S., Mao, D., Shu, L., and Zhang, Y., Anion exchange membrane organic fouling and mitigation in salt valorization process from high salinity textile wastewater by bipolar membrane electrodialysis, Desalination, 2019, vol. 465, p. 94.

    Article  CAS  Google Scholar 

  52. Cherif, A.T. and Molenat, J., Nitric acid and sodium hydroxide generation by electrodialysis using bipolar membranes, J. Appl. Electrochem., 1997, vol. 27, p. 1069.

    Article  CAS  Google Scholar 

  53. Ben Ali, M.A., Rakib, M., Laborie, S., Viers, Ph., and Durand, G., Coupling of bipolar membrane electrodialysis and ammonia stripping for direct treatment of wastewaters containing ammonium nitrate, J. Membr. Sci., 2004, vol. 244, p. 89.

    Article  CAS  Google Scholar 

  54. Linden, N., Bandinu, G.L., Vermaas, D. A., Spanjers, H., and Lier, J.B., Bipolar membrane electrodialysis for energetically competitive ammonium removal and dissolved ammonia production, J. Clean. Prod., 2020, vol. 259, p. 120788.

    Article  CAS  Google Scholar 

  55. Nagasubramanian, P.K., Chlanda, F.P., and Liu, K.J., Use of bipolar membranes for generation of acid and base—an engineering and economic analysis, J. Membr. Sci., 1977, vol. 2, p. 109.

    Article  CAS  Google Scholar 

  56. Mani, K.N., Chlanda, F.P., and Byszewski, C.H., AQUATECH membrane technology for recovery of acid/base values from salt streams, Desalination, 1988, vol. 68, p. 149.

    Article  CAS  Google Scholar 

  57. Mani, K.N., Electrodialysis water splitting technology, J. Membr. Sci., 1991, vol. 58, p. 117.

    Article  CAS  Google Scholar 

  58. Kim, Y.H. and Moon, S.H., Lactic acid recovery from fermentation broth using one-stage electrodialysis, J. Chem. Technol. Biotechnol., 2001, vol. 76, p. 169.

    Article  CAS  Google Scholar 

  59. Strathmann, H., Ion-exchange Membrane Separation Processes, Elsevier, 2004.

    Google Scholar 

  60. Kemperman, A.J.B., Handbook on Bipolar Membrane Technology, Enschede: Twente Univ., 2000.

    Google Scholar 

  61. Pourcelly, G., Electrodialysis with bipolar membranes: principles, optimization, and applications, Russ. J. Electrochem., 2002, vol. 38, p. 919.

    Article  CAS  Google Scholar 

  62. MEGA Group; RALEX® electro separation membranes. Bipolar membranes RALEX® BM: roll/sheet | EDBM; https://www.mega.cz/membranes/.

  63. Limited Liability Company United Chemical Company “SHCHEKINOAZOT”; http://n-azot.ru/product/ heterogeneous-ion-exchange-membranes?lang=EN.

  64. Limited Liability Company Innovative Enterprise “SHCHEKINOAZOT”; http://www.azotom.ru/bipolyarnye-membrany/.

  65. Zabolotskii, V., Sheldeshov, N., and Melnikov, S., Effect of cation-exchange layer thickness on electrochemical and transport characteristics of bipolar membranes, J. Appl. Electrochem., 2013, vol. 43, p. 1117.

    Article  CAS  Google Scholar 

  66. Zabolotsky, V.I., Utin, S.V., Bespalov, A.V., and Strelkov, V.D., Modification of asymmetric bipolar membranes by functionalized hyperbranched polymers and their investigation during pH correction of diluted electrolytes solutions by electrodialysis, J. Membr. Sci., 2015, vol. 494, p. 188.

    Article  CAS  Google Scholar 

  67. Utin, S.V., Loza, S.A., Bespalov, A.V., and Zabolotsky, V.I., Influence of functionalization and ionogenic groups nature of hyperbranched polymers on electrochemical characteristics of asymmetric bipolar membranes, Petr. Chem., 2018, vol. 58, no. 2, p. 137.

    Article  CAS  Google Scholar 

  68. Fu, R.Q., Xu, T.W., Wang, G., Yang, W.H., and Pan, Z.X., Fundamental studies on the intermediate layer of a bipolar membrane. Part 1. PEG-catalytic water splitting in the interface of a bipolar membrane, J. Colloid Interface Sci., 2003, vol. 263, p. 386.

    Article  CAS  PubMed  Google Scholar 

  69. Sheldeshov, N.V. and Zabolotsky, V.I., Bipolar ion-exchange membranes. Preparation. Properties. Application, in Membranes and Membrane Technologies (in Russian), Yaroslavtsev, A.B., Ed., Moscow: Nauchnyi Mir, 2013. p. 70.

    Google Scholar 

  70. Sheldeshov, N.V., Zabolotskii, V.I., Bespalov, A.V., Kovalev, N.V., Alpatova, N.V., Akimova, A.V., Mochalova, T.V., Kovaleva, V.I., and Boyarishcheva, A.Yu., The influence of catalytic additives on electrochemical properties of bipolar membranes, Petr. Chem., 2017, vol. 57, p. 518.

    Article  CAS  Google Scholar 

  71. Martínez, R.J. and Farrell, J., Water splitting activity of oxygen-containing groups in graphene oxide catalyst in bipolar membranes, Comput. Theor. Chem., 2019, vol. 1164, p. 112556.

    Article  CAS  Google Scholar 

  72. Sun, M., Li, M., Zhang, X., Wu, C., and Wu, Y., Graphene oxide modified porous P84 co-polyimide membranes for boron recovery by bipolar membrane electrodialysis process, Sep. Purif. Technol., 2020, vol. 232, p. 115.

    Article  CAS  Google Scholar 

  73. Wang, Q., Wu, B., Jiang, C., Wang, Y., and Xu, T., Improving the water dissociation efficiency in a bipolar membrane with amino-functionalized MIL-101, J. Membr. Sci., 2017, vol. 524, p. 370.

    Article  CAS  Google Scholar 

  74. Ionite Membranes. Granules. Powders: Catalog (in Russian), Moscow: NIITEKhim. NII “Plastmassy,” 1977, p. 15.

  75. GOST (State Standard) 20298-74 Ion exchange resins. Cationites. Technical conditions (with changes No. 1–5), 1976.

  76. GOST (State Standard) 20301-74 Ion exchange resins. Anionites. Technical conditions (with changes No. 1–5), 1976.

  77. Semushin, A.M., Yakovlev, V.A., and Ivanova, E.V., Infrared Absorption Spectra of Ion-Exchange Materials, Reference guide (in Russian), Leningrad: Khimiya, 1980.

    Google Scholar 

  78. Zabolotskii, V.I., Gnusin, N.P., and Shel’deshov, N.V., Current-voltage characteristics of the transition region in MB-1 bipolar membrane, Sov. Electrochem., 1984, vol. 20, p. 1238.

    Google Scholar 

  79. Nemodruk, A.A. and Karalova, Z.K., Analytical Chemistry of Boron, Moscow: Nauka, 1964.

    Google Scholar 

  80. Timashev, S.F. and Kirganova, E.V., Mechanism of the electrolytic decomposition of water-molecules in bipolar ion-exchange membranes, Sov. Electrochem., 1981, vol. 17, p. 366.

    Google Scholar 

  81. Umnov, V.V., Shel’deshov, N.V., and Zabolotskii, V.I., Structure of the space-charge region at the anionite/cationite interface in bipolar membranes, Russ. J. Electrochem., 1999, vol. 35, p. 411.

    CAS  Google Scholar 

  82. Zabolotskii, V., Sheldeshov, N., and Melnikov, S., Heterogeneous bipolar membranes and their application in electrodialysis, Desalination, 2014, vol. 342, p. 183.

    Article  CAS  Google Scholar 

Download references

Funding

The work is supported by the State Contract with the Ministry of Sciences and Education of RF (project no. 10.3091.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Sheldeshov or V. I. Zabolotsky.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, N.V., Karpenko, T.V., Sheldeshov, N.V. et al. Electrochemical Characteristics of Modified Heterogeneous Bipolar Membrane and Electromembrane Process of Nitric Acid and Sodium Hydroxide Recuperation from Sodium Nitrate and Boric Acid Solution. Russ J Electrochem 57, 122–133 (2021). https://doi.org/10.1134/S1023193521020063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521020063

Keywords:

Navigation