Skip to main content
Log in

Preparation and Electrochemical Properties of Heterogeneous Bipolar Membranes with a Catalyst for the Water Dissociation Reaction

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

A method for producing an aMB-2m heterogeneous bipolar membrane modified with a KF-1 catalyst with phosphoric acid groups is developed. A mathematical model is proposed for describing the current–voltage characteristics of the modified heterogeneous membranes. The electrochemical characteristics of the produced aMB-2m membrane and a commercial MB-3 heterogeneous bipolar membrane are studied by impedance spectroscopy. The electrodialysis process of recovery of sulfuric acid and sodium hydroxide from a solution of sodium sulfate in electrodialyzers with a modified aMB-2m bipolar membrane and an MB-3 membrane is studied. The use of a modified aMB-2m bipolar membrane in the electrodialyzer makes it possible to obtain solutions with higher concentrations of sulfuric acid and sodium hydroxide and lower concentrations of salt ions in the acid and alkali compared to the use of a commercial MB-3 heterogeneous bipolar membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Handbook on Bipolar Membrane Technology, Ed. by A. J. B. Kemperman (Twente University Press, Enschede, 2000).

    Google Scholar 

  2. T. Xu, Desalination 140, 247 (2001).

    Article  CAS  Google Scholar 

  3. G. Pourcelly, Russ. J. Electrochem. 38, 919 (2002).

    Article  CAS  Google Scholar 

  4. T. Xu, Resour., Conserv. Recycl. 37, 1 (2002).

    Article  CAS  Google Scholar 

  5. H. Strathmann, Desalination 264, 268 (2010).

    Article  CAS  Google Scholar 

  6. G. A. Bobrinskaya and O. V. Bobreshova, Russ. J. Appl. Chem. 73, 241 (2000).

    Google Scholar 

  7. Y. Yang, X. Gao, A. Fan, L. Fu, and C. Gao, J. Membr. Sci. 449, 119 (2014).

    Article  CAS  Google Scholar 

  8. G. A. Bobrinskaya, T. V. Pavlova, and A. Ya. Shatalov, Sov. J. Appl. Chem. 58, 711 (1985).

    Google Scholar 

  9. D. Raucq, G. Pourcelly, and C. Gavach, Desalination 91, 163 (1993).

    Article  CAS  Google Scholar 

  10. M. Paleologou, A. Thibault, P.-Y. Wong, R. Thompson, and R. M. Berry, Sep. Purif. Technol. 11, 159 (1997).

    Article  CAS  Google Scholar 

  11. Y. W. Berkessa, Q. Lang, B. Yan, S. Kuang, D. Mao, L. Shu, and Y. Zhang, Desalination 465, 94 (2019).

    Article  CAS  Google Scholar 

  12. A. T. Cherif and J. Molenat, J. Appl. Electrochem. 27, 1069 (1997).

    Article  CAS  Google Scholar 

  13. P. Pinacci, Membr. Technol. 134, 11 (2001).

    Article  Google Scholar 

  14. C. Huang, T. Xu, Y. Zhang, Y. Xue, and G. Chen, J. Membr. Sci. 288, 1 (2007).

    Article  CAS  Google Scholar 

  15. A. Grabowski, G. Zhang, H. Strathmann, and G. Eigenberger, Sep. Purif. Technol. 60, 86 (2008).

    Article  CAS  Google Scholar 

  16. V. I. Zabolotskii, S. V. Utin, K. A. Lebedev, P. A. Vasilenko, and N. V. Shel’deshov, Rus. J. Electrochem. 48, 767 (2012).

    Article  CAS  Google Scholar 

  17. Ion Exchange Membranes, Fundamentals, and Applications, Ed. by Y. Tanaka, 2nd Ed. (Elsevier Science, 2015).

    Google Scholar 

  18. V. P. Greben’, N. Ya. Pivovarov, N. Ya. Kovarskii, and G. Z. Nefedova, Zh. Fiz. Khimii 52, 2641 (1978).

    Google Scholar 

  19. R. Simons, Nature 280, 824 (1979).

    Article  CAS  Google Scholar 

  20. R. Simons, Electrochim. Acta 29, 151 (1984).

    Article  CAS  Google Scholar 

  21. K. Shimizu and A. Tanioka, Polymer 38, 5441 (1997).

    Article  CAS  Google Scholar 

  22. T. Hosono and A. Tanioka, Polymer 39, 4199 (1998).

    Article  CAS  Google Scholar 

  23. Q. Wang, B. Wu, C. Jiang, Y. Wang, and T. Xu, J. Membr. Sci. 524, 370 (2017).

    Article  CAS  Google Scholar 

  24. R. G. Simons, J. Membr. Sci. 78, 13 (1993).

    Article  CAS  Google Scholar 

  25. R. Q. Fu, T. W. Xu, G. Wang, W. H. Yang, and Z. X. Pan, J. Colloid Interface Sci. 263, 386 (2003).

    Article  CAS  Google Scholar 

  26. M. S. Kang, A. Tanioka, and S. H. Moon, Korean J. Chem. Eng. 19, 99 (2002).

    Article  CAS  Google Scholar 

  27. H. D. Hurwitz and R. Dibiani, J. Membr. Sci. 228, 17 (2004).

    Article  CAS  Google Scholar 

  28. M.-S. Kang, Y.-J. Choi, and S.-H. Moon, J. Colloid Interface Sci. 273, 533 (2004).

    Article  CAS  Google Scholar 

  29. S. S. Mel’nikov, O. V. Shapovalova, N. V. Shel’deshov, and V. I. Zabolotskii, Petr. Chem. 51, 577 (2011).

    Article  Google Scholar 

  30. R. Fu, Patent no. 1704151 CN (University of Science & Technology of China, 2005).

  31. S. V. Utin, S. A. Loza, A. V. Bespalov, and V. I. Zabolotsky, Petr. Chem. 58, 137 (2018).

    Article  CAS  Google Scholar 

  32. R. Parnamae, S. Mareev, V. Nikonenko, S. Melnikov, N. Sheldeshov, V. Zabolotskii, H.V.M. Hamelers, and M. Tedesco, J. Membr. Sci. 617, 118538 (2021).

    Article  CAS  Google Scholar 

  33. N. V. Sheldeshov, V. I. Zabolotskii, A. V. Bespalov, N. V. Kovalev, N. V. Alpatova, A. V. Akimova, T. V. Mochalova, V. I. Kovaleva, and A. Y. Boyarishcheva, Petr. Chem. 57, 518 (2017).

    Article  CAS  Google Scholar 

  34. N. P. Gnusin, V. I. Zabolotsky, N. V. Sheldeshov, V. M. Illarionova, G. Z. Nefedova, and Yu. G. Freidlin, Zhurn. Prikl. Khimii 53, 1069 (1980).

    CAS  Google Scholar 

  35. V. P. Greben’, RF Patent No. 745193, Byull. Izobret., No. 14 (1990).

  36. N. V. Shel’deshov, O. N. Krupenko, M. V. Shadrina, and V. I. Zabolotskii, Russ. J. Electrochem. 38, 884 (2002).

    Article  Google Scholar 

  37. N. V. Shel’deshov and V. I. Zabolotskii, in Membranes and Membrane Technologies, Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2013).

    Google Scholar 

  38. V. V. Umnov, N. V. Shel’deshov, and V. I. Zabolotskii, Russ. J. Electrochem. 35, 871 (1999).

    CAS  Google Scholar 

  39. N. Ya. Pivovarov, A. P. Golikov, and V. P. Greben’, Russ. J. Electrochem. 33, 536 (1997).

    CAS  Google Scholar 

  40. MEGA Group; RALEX® electro separation membranes. Bipolar membranes RALEX® BM: roll/sheet EDBM. URL. https://www.mega.cz/membranes/

  41. Limited Liability Company United Chemical Company SHCHEKINOAZOT. URL. http://n-azot.ru/product/heterogeneous-ion-exchange-membranes?lang=EN

Download references

Funding

This study was financially supported by the Kuban Science Foundation within scientific project no. MFI-20.1/124 (agreement no. MFI-20.1-27/20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sheldeshov.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, N.V., Karpenko, T.V., Sheldeshov, N.V. et al. Preparation and Electrochemical Properties of Heterogeneous Bipolar Membranes with a Catalyst for the Water Dissociation Reaction. Membr. Membr. Technol. 3, 231–244 (2021). https://doi.org/10.1134/S251775162104003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S251775162104003X

Navigation