Skip to main content
Log in

Application of a Modified Carbon Paste Electrode Using Core–Shell Magnetic Nanoparticle and Modifier for Simultaneous Determination of Norepinephrine, Acetaminophen and Tryptophan

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The current study was conducted to synthesize 2-(4-ferrocenyl-[1,2,3]triazol-1-yl)-1-(naphthalen-2-yl) ethanone (2FTNE) as a mediator and magnetic core–shell manganese ferrite nanoparticles (CMNP) as a nanoparticle for construction of a modified carbon paste electrode (CPE). The electrochemical behavior of norepinephrine (NEP) was assessed using cyclic voltammetry and its determination was done by using differential pulse voltammetry (DPV) in the presence of tryptophan (TRP) and acetaminophen (AC). The 2FTNECMNP-modified CPE (2FTNECMNPPE) in comparison with bare CPE and CMNP modified CPE exhibited high electro-catalytic activity to the NEP oxidation. Linearity of the oxidation peak current with concentration of NEP was maintained between 0.075–60 μM (R2 = 0.9995). Limit of detection for NEP was obtained 0.016 μM on the basis of three times of standard deviation (3Sb) of blank. High selectivity, proper stability and suitable reproducibility are some advantages of the 2FTNECMNPPE that was successful in the measurement of NEP, AC and TRP in NEP ampoule, acetaminophen tablet and urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Voet, D. and Voet, J.G., Biochemistry, 2nd ed., New York: Wiley, 1995.

    Google Scholar 

  2. Cole, S.W., Korin, Y.D., Fahey, J.L., and Zack, J.A., Norepinephrine accelerates HIV replication via protein kinase A-dependent effects on cytokine production, J. Immunol., 1998, vol. 161, p. 610.

    CAS  PubMed  Google Scholar 

  3. Carrera, V., Sabater, E., Vilanova, E., and Sogorb, M.A., A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures, J. Chromatogr. B, 2007, vol. 847, p. 88.

    Article  CAS  Google Scholar 

  4. Kuhlenbeck, D.L., O’Neill, T.P., Mack, C.E., Hoke, S.H., and Wehmeyer, K.R., Determination of norepinephrine in small volume plasma samples by stable-isotope dilution gas chromatography—tandem mass spectrometry with negative ion chemical ionization, J. Chromatogr. B, 2000, vol. 738, p. 319.

    Article  CAS  Google Scholar 

  5. Lin, Z., Wu, X., Lin, X., and Xie, Z., End-column chemiluminescence detection for pressurized capillary electrochromatographic analysis of norepinephrine and epinephrine, J. Chromatogr. A, 2007, vol. 1170, p. 118.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, M., Huang, X.M., Li, J., and Shen, H.X., Peroxidase-based spectrophotometric methods for the determination of ascorbic acid, norepinephrine, epinephrine, dopamine and levodopa, Anal. Chim. Acta, 1997, vol. 357, p. 261.

    Article  CAS  Google Scholar 

  7. Nalewajko, E., Wiszowata, A., and Kojło, A., Determination of catecholamines by flow-injection analysis and high-performance liquid chromatography with chemiluminescence detection, J. Pharm. Biomed. Anal., 2007, vol. 43, p. 1673.

    Article  CAS  PubMed  Google Scholar 

  8. Mazloum-Ardakani, M., Beitollahi, H., Amini, M.K., Mirkhalaf, F., and Mirjalili, B.B.F., A highly sensitive nanostructure-based electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of acetaminophen and tryptophan, Biosens. Bioelectron., 2011, vol. 26, p. 2102.

    Article  CAS  PubMed  Google Scholar 

  9. Kalimuthu, P. and Abraham John, S., Selective determination of norepinephrine in the presence of ascorbic and uric acids using an ultrathin polymer film modified electrode, Electrochim. Acta, 2011, vol. 56, p. 2428.

    Article  CAS  Google Scholar 

  10. Beitollahi, H. and Sheikhshoaie, I., Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode, J. Electroanal. Chem., 2011, vol. 611, p. 336.

    Article  CAS  Google Scholar 

  11. Chen, X., Zhang, G., Shi, L., Pan, S., Liu, W., and Pan, H., Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine, Mater. Sci. Eng. C, 2016, vol. 65, p. 80.

    Article  CAS  Google Scholar 

  12. Bui, M.P.N., Li, C.A., Han, K.N., Pham, X., and Seong, G.H., Determination of acetaminophen by electrochemical co-deposition of glutamic acid and gold nanoparticles, Sens. Actuators B, 2012, vol. 174, p. 318.

    Article  CAS  Google Scholar 

  13. Kumar, K.G. and Letha, R., Determination of paracetamol in pure form and in dosage forms using N,N-dibromo dimethylhydantoin, J. Pharm. Biomed. Anal., 1997, vol. 15, p. 1725.

    Article  CAS  PubMed  Google Scholar 

  14. Filik, H., Aksu, D., Apak, R., Şener, I.S., and Kılıç, E., An optical fibre reflectance sensor for paminophenol determination based on tetrahydroxycalix[4]arene as sensing reagent, Sens. Actuators B, 2009, vol. 136, p. 105.

    Article  CAS  Google Scholar 

  15. Pérez-Ruiz, T., Martínez-Lozano, C., Tomás, V., and Galera, R., Migration behavior and separation of acetaminophen and p-aminophenol in capillary zone electrophoresis: analysis of drugs based on acetaminophen, J. Pharm. Biomed. Anal., 2005, vol. 38, p. 87.

    Article  PubMed  CAS  Google Scholar 

  16. Al-Ghannam, Sh.M., El-Brashy, A.M., and Al-Farhan, B.S., Fluorimetric determination of some thiol compounds in their dosage forms, Farmaco, 2002, vol. 57, p. 625.

    Article  CAS  PubMed  Google Scholar 

  17. Wangfuengkanagul, N. and Chailapakul, O., Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system, J. Pharm. Biomed. Anal., 2002, vol. 28, p. 841.

    Article  CAS  PubMed  Google Scholar 

  18. Nebot, C., Gibb, S.W., and Boyd, K.G., Quantification of human pharmaceuticals in water samples by high performance liquid chromatography—tandem mass spectrometry, Anal. Chim. Acta, 2007, vol. 598, p. 87.

    Article  CAS  PubMed  Google Scholar 

  19. Simonneaux, V. and Ribelayga, C., Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters, Pharmacol. Rev., 2003, vol. 55, p. 325.

    Article  CAS  PubMed  Google Scholar 

  20. Esfandiari Baghbamidi, S., Beitollahi, H., Mohammadi, S.Z., Tajik, S., Soltani-Nejad, S., and Soltani-Nejad, V., Nanostructure-based electrochemical sensor for the voltammetric determination of benserazide, uric acid, and folic acid, Chin. J. Catal., 2013, vol. 34, p. 1869.

    Article  CAS  Google Scholar 

  21. Beitollahi, H. and Mohammadi, S., Selective voltammetric determination of norepinephrine in the presence of acetaminophen and tryptophan on the surface of a modified carbon nanotube paste electrode, Mater. Sci. Eng. C, 2013, vol. 33, p. 3214.

    Article  CAS  Google Scholar 

  22. Mohammadi, S.Z., Beitollahi, H., Khodaparast, B., and Hosseinzadeh, R., Electrochemical determination of epinephrine, uric acid and folic acid using a carbon paste electrode modified with novel ferrocene derivative and core–shell magnetic nanoparticles, Res. Chem. Intermed., 2019, vol. 45, p. 1117.

    Article  CAS  Google Scholar 

  23. Mohammadizadeh, N., Mohammadi, S.Z., and Kaykhaii, M., Carbon paste electrode modified with ZrO2 nanoparticles and ionic liquid for sensing of dopamine in the presence of uric acid, J. Anal. Chem., 2018, vol. 73, p. 685.

    Article  CAS  Google Scholar 

  24. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and Novel 2-(4-Oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848.

    Article  CAS  PubMed  Google Scholar 

  25. Mohammadi, S.Z., Tajik, S., and Beitollahi, H., Screen printed carbon electrode modified with magnetic core shell manganese ferrite nanoparticles for electrochemical detection of amlodipine research on chemical intermediates, J. Serb. Chem. Soc., 2019, vol. 84, p. 1005.

    Article  CAS  Google Scholar 

  26. Mohammadi, S.Z., Beitollahi, H., and Fadaeian, H., Voltammetric determination of isoproterenol using a graphene oxide nano sheets paste electrode, J. Anal. Chem., 2018, vol. 73, p. 705.

    Article  CAS  Google Scholar 

  27. Mohammadi, S.Z., Beitollahi, H., Dehghan, Z., and Hosseinzadeh, R., Electrochemical determination of ascorbic acid, uric acid and folic acid using carbon paste electrode modified with novel synthesized ferrocene derivative and core–shell magnetic nanoparticles in aqueous media, Appl. Organometal. Chem., 2018, vol. 32, article 4551.

  28. Tajik, S., Taher, M.A., and Beitollahi, H., First report for simultaneous determination of methyldopa and hydrochlorothiazide using a nanostructured based electrochemical sensor, J. Electroanal. Chem., 2013, vol. 704, p. 137.

    Article  CAS  Google Scholar 

  29. Mohammadi, S.Z., Beitollahi, H., and Mousavi, M., Determination of hydroxylamine using a carbon paste electrode modified with graphene oxide nano sheets, Rus. J. Electrochem., 2017, vol. 53, p. 374.

    Article  CAS  Google Scholar 

  30. Mohammadi, S.Z., Beitollahi, H., Allahabadi, H., and Rohani, T., Disposable electrochemical sensor based on modified screen printed electrode for sensitive cabergoline quantification, J. Electroanal. Chem., 2019, vol. 847, p. 113223.

    Article  CAS  Google Scholar 

  31. Mohammadi, S.Z., Beitollahi, H., Jasemi, M., and Akbari, A., Nanomolar determination of methyldopa in the presence of large amounts of hydrochlorothiazide using a carbon paste electrode modified with graphene oxide nanosheets and 3-(4'-amino-3'-hydroxy-biphenyl-4-yl)-acrylic acid, Electroanalysis, 2015, vol. 27, p. 2421.

    Article  CAS  Google Scholar 

  32. Mosazadeh, F., Mohammadi, S.Z., and Sarhadi, A.H., Electrochemical determination of acetaminophen by using modified screen printed carbon electrode, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 1163.

    CAS  Google Scholar 

  33. Mohammadi, S.Z., Beitollahi, H., and Hassanzadeh, M., Voltammetric determination of tryptophan using a carbon paste electrode modified with magnesium core–shell nanocomposite and ionic liquids, Anal. Bioanal. Chem. Res., 2018, vol. 5, p. 55.

    CAS  Google Scholar 

  34. Mohammadi, S.Z., Sarhadi, A.H., and Mosazadeh, F., Screen-printed electrode modified with magnetic core–shell nanoparticles for detection of chlorpromazine, Anal. Bioanal. Chem. Res., 2018, vol. 5, p. 363.

    CAS  Google Scholar 

  35. Beitollahi, H., Mohammadi, S.Z., and Tajik, S., Electrochemical behavior of morphine at the surface of magnetic core shell manganese ferrite nanoparticles modified screen printed electrode and its determination in real samples, Int. J. Nano Dimens., 2019, vol. 10, p. 304.

    CAS  Google Scholar 

  36. Mohammadi, S.Z., Beitollahi, H., and Bani Asadi, E., Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode, Environ. Monit. Assess, 2015, vol. 187, p. 122.

    Article  PubMed  CAS  Google Scholar 

  37. Molaakbari, E., Mostafavi, A., and Beitollahi, H., Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine, Sens Actuators B: Chem., 2015, vol. 208, p. 195.

    Article  CAS  Google Scholar 

  38. Mohammadi, S.Z., Beitollahi, H., and Mohammad Rahimi, N., Voltammetric determination of epinephrine and uric acid using modified graphene oxide nano sheets paste electrode, J. Anal. Chem., 2019, vol. 74, p. 345.

    Article  Google Scholar 

  39. Yan, J., Liu, S., Zhang, Z., He, G., Zhou, P., Liang, H., Tian, L., Zhou, X., and Jiang, H., Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd–Pt nanoparticles, Colloids Surf., B, 2013, vol. 111, p. 392.

    Article  CAS  Google Scholar 

  40. Mohammadi, S.Z. and Seyedi, A., Preconcentration of cadmium and copper ions on magnetic core–shell nanoparticles for determination by flame atomic absorption, Toxicol. Environ. Chem., 2016, vol. 98, p. 705.

    CAS  Google Scholar 

  41. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.

    Google Scholar 

  42. Mazloum-Ardakani, M., Beitollahi, H., Amini, M.K., Mirkhalaf, F., and Abdollahi-Alibeik, M., New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode, Sens. Actuators B, 2010, vol. 151, p. 243.

    Article  CAS  Google Scholar 

  43. Mazloum-Ardakani, M., Beitollahi, H., Sheikh-Mohseni, M.A., Naeimi, H., and Taghavinia, N., Novel nanostructure electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of high concentrations of acetaminophene and folic acid, Appl. Catal. A, 2010, vol. 378, p. 195.

    Article  CAS  Google Scholar 

  44. Salmanpour, S., Tavana, T., Pahlavan, A., Khalilzadeh, M.A., Ensafi, A.A., Karimi-Maleh, H., Beitollahi, H., Kowsari, E., and Zareye, D., Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode, Mater. Sci. Eng. C, 2012, vol. 32, p. 1912.

    Article  CAS  Google Scholar 

  45. Mahmoudi Moghaddam, H. and Beitollahi, H., Simultaneous voltammetric determination of norepinephrine and acetaminophen at the surface of a modified carbon nanotube paste electrode, Int. J. Electrochem. Sci., 2011, vol. 6, p. 6503.

    Google Scholar 

  46. Chen, J., Huang, H., Zeng, Y., Tang, H., and Li, L., A novel composite of molecularly imprinted polymer-coated PdNPs for electrochemical sensing norepinephrine, Biosens. Bioelectron., 2015, vol. 65, p. 366.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge Payame Noor University for partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Zia Mohammadi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed Zia Mohammadi, Beitollahi, H., Askari, M. et al. Application of a Modified Carbon Paste Electrode Using Core–Shell Magnetic Nanoparticle and Modifier for Simultaneous Determination of Norepinephrine, Acetaminophen and Tryptophan. Russ J Electrochem 57, 74–84 (2021). https://doi.org/10.1134/S1023193521010079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521010079

Keywords:

Navigation