Skip to main content
Log in

Structural, Optical and Electrical Properties of ZnO Nanostructures Synthesized under Different Microwave Power

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The present work outlines the synthesis of prismatic shaped zinc oxide (ZnO) nanostructures through microwave combustion method using different microwave power (160, 320, 480, 640, and 800 W) using Zinc nitrate as a precursor and ethylene glycol as solvent. The structural characterization of the synthesized ZnO nanostructures has been accessed by X-ray diffraction study (XRD), Field emission scanning electron microscopy (FE–SEM), UV-Visible spectroscopy (UV-Vis), energy-dispersive analysis using X-rays (EDAX) and photoconductivity technique. The XRD and FE–SEM results confirmed that the crystal size and growth of ZnO nanostructures depended on the heating of microwave powers. EDAX shows the existence of Zn and O in the synthesized ZnO microstructures. The optical properties and band gap studies were undertaken by UV-Visible spectroscopy. IV characterization study was performed to determine the electrical property of ZnO films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Venkatanarayanan, A., Temperature sensing materials, E. Spain, compress, Mater. Process., 2014, vol. 13, p. 57.

    Google Scholar 

  2. Hong, R.Y., Li, J.H., Chen, L.L., Liu, D.Q., Li, H.Z., Zheng, Y., and Ding, J., Synthesis, surface modification and photocatalytic property of ZnO nanoparticles, Powder Technol., 2009, vol. 189, p. 426.

    Article  CAS  Google Scholar 

  3. Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P., and Kumar, P., Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation, J. Nanobiotechnol., 2018, vol. 16, p. 20.

    Article  CAS  Google Scholar 

  4. Han, B.S., Caliskan, S., Sohn, W., Kim, M., Lee, J.K., and Jang, H.W., Room temperature deposition of crystalline nanoporous ZnO nanostructures for direct use as flexible DSSC photoanode, Nanoscale Res. Lett., 2016, vol. 11, p. 221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Maleh, H.K., Ahanjan, K., Taghavi, M., and Ghaemy, M., A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples, Anal. Methods, 2016, vol. 8, p. 1780.

    Article  CAS  Google Scholar 

  6. Zhang, J., Gu, P., Xu, J., Xue, H., and Pang, H., High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries, Nanoscale, 2016, vol. 8, p. 18595.

    Google Scholar 

  7. He, X., Yoo, J.E., Lee, M.H., and Bae, J., Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires, Nanotechnology, 2017, vol. 28, p. 6.

    Google Scholar 

  8. Suresh Sandhu, J.S., ZnO nanobelt: an efficient catalyst for synthesis of 5-arylitidine 2,4-thiazolidinediones and 5-arylidine-rhodanine, Int. J. Org. Chem., 2012, vol. 2, p. 305.

    Article  CAS  Google Scholar 

  9. Osmond, M.J. and Mccall, M.J., Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard, Nanotoxicology, 2010, vol. 4, no. 1, p. 25.

    Article  CAS  Google Scholar 

  10. Yatskiv, R., Grym, J., Zdansky, K., and Piksova, K., Semimetal graphite/ZnO Schottky diodes and their use for hydrogen sensing, Carbon, 2012, vol. 50, p. 3928.

    Article  CAS  Google Scholar 

  11. Wojnarowicz, J., Chudoba, T., Koltsov, I., Gierlotka, S., Dworakowska, S., and Lojkowski, W., Size control mechanism of ZnO nanoparticles obtained in microwave solvothermal synthesis, Nanotechnology, 2018, vol. 29, no. 6, p. 065601.

    Article  PubMed  CAS  Google Scholar 

  12. Wojnarowicz, J., Chudoba, T., Gierlotka, S., and Lojkowski, W., Effect of microwave radiation, power on the size of aggregates of ZnO NPs prepared using microwave solvothermal synthesis, Nanomaterials, 2018, vol. 8, p. 10.

    Article  CAS  Google Scholar 

  13. Ghosh, S., Majumder, D., Sen, A., and Roy, S., Facile sonochemical synthesis of zinc oxide nanoflakes at room temperature, Mater. Lett., 2015, vol. 130, p. 215.

    Article  CAS  Google Scholar 

  14. Mary, J.A., Vijaya, J.J., Bououdina, M., Kennedy, L.J., Daie, J.H., and Song, Y., Effect of Ce and Cu co-doping on the structural, morphological and optical properties of ZnO nanocrystals and first principle investigation of their stability and magnetic properties, Phys. E, 2015, vol. 66, p. 209.

    Article  CAS  Google Scholar 

  15. Basith, N.M., Vijaya, J.J., Kennedy, L.J., Bououdina, M., Jenefar, S., and Kaviyarasan, V., Influence of Co doping on combined photocatalytic and antibacterial activity of ZnO nanoparticles, J. Mater. Sci. Technol., 2014, vol. 30, p. 1108.

    Article  CAS  Google Scholar 

  16. Djurisic, A.B., Ng, A.M.C., and Chen, X.Y., ZnO nanostructures for optoelectronics: material properties and device applications, Prog. Quant. Electron., 2010, vol. 34, p. 191.

    Article  CAS  Google Scholar 

  17. Sherly, E.D., Vijaya, J.J., Selvam, N.C.S., and Kennedy, L.J., Microwave assisted combustion synthesis of coupled ZnO–ZrO2 nanoparticles and their role in the photocatalytic degradation of 2,4-dichlorophenol, Ceram. Int., 2014, vol. 40, p. 5681.

    Article  CAS  Google Scholar 

  18. Pal, U. and Santiago, P., Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process, J. Phys. Chem. B, 2005, vol. 109, p. 15317.

    Article  CAS  PubMed  Google Scholar 

  19. Sherly, E.D., Vijaya, J.J., and Kennedy, L.J., Effect of CeO2 coupling on the structural, optical and photocatalytic properties of ZnO nanoparticle, J. Mol. Struct., 2015, vol. 1099, p. 114.

    Article  CAS  Google Scholar 

  20. Suresh, P., Vijaya, J.J., and Kennedy, L.J., Fabrication of hexagonal ZnO nanorods on porous carbon matrix by microwave irradiation, J. Nanosci. Nanotech., 2013, vol. 13, p. 3068.

    Article  CAS  Google Scholar 

  21. Shamhari, N.M., Wee, B.S., Chin, S.F., and Kok, K.Y., Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution, Acta Chim. Slov., 2018, vol. 65, p. 578.

    Article  CAS  PubMed  Google Scholar 

  22. Sharma, D., Sharma, S., Kaitha, B.S., Rajput, J., and Kaur, M., Synthesis of ZnO nanoparticles using surfactant free in-air, Appl. Surf. Sci., 2011, vol. 257, p. 9661.

    Article  CAS  Google Scholar 

  23. Mary, J.A., Vijaya, J.J., Dai, J.H., Bououdina, M., Kennedy, L.J., and Song, Y., Experimental and first-principles DFT studies of electronic, optical and magnetic properties of cerium–manganese co-doped zinc oxide nanostructures, Mater. Sci. Semicond. Proc., 2015, vol. 34, p. 38.

    Google Scholar 

  24. Zhao, Y., Zhu, J.J., Hong, J.M., Bian, N., and Chen, H.Y., Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology, Eur. J. Inorg. Chem., 2004, vol. 2004, p. 4072.

    Article  CAS  Google Scholar 

  25. Darwish, M., Mohammadi, A., Assi, N., Manuchehri, Q.S., and Alahmad, Y., Shape-controlled ZnO nanocrystals synthesized via auto combustion method and enhancement of the visible light catalytic activity by decoration on graphene, J. Alloys Compd., 2017, vol. 703, p. 406.

    Article  CAS  Google Scholar 

  26. Yathisha, R.O. and Nayaka, Y.A., Structural, optical and electrical properties of zinc incorporated copper oxide nanoparticles: doping effect of Zn, J. Mater. Sci., 2018, vol. 53, p. 678.

    Article  CAS  Google Scholar 

  27. Zhang, B.J., Lian, J.S., Zhao, L., and Jiang, Q., Structural, optical and electrical properties of Zn1−xCdxO thin films prepared by PLD, Appl. Surf. Sci., 2011, vol. 257, p. 5657.

    Article  CAS  Google Scholar 

  28. Freedsman, J.J., Kennedy, L.J., Kumar, R.T., Sekaran, G., and Vijaya, J.J., Studies on the structural and optical properties of zinc oxide nanobushes and Co-doped ZnO self-aggregated nanorods synthesized by simple thermal decomposition route, Mater. Res. Bull., 2010, vol. 45, p. 1486.

    Article  CAS  Google Scholar 

  29. Cullity, B.D., Elements of X-ray Diffraction, Reading, MA: Addison-Wesley, 1978.

    Google Scholar 

  30. Shafi, P.M. and Bose, A.C., Impact of crystalline defects and size on X-ray line broadening: a phenomenological approach for tetragonal SnO2 nanocrystals, AIP Adv., 2015, vol. 5, p. 7.

    Google Scholar 

  31. Herring, N.P., Panchakarla, L.S., and El-Shall, M.S., P-type nitrogen-doped ZnO nanostructures with controlled shape and doping level by facile microwave synthesis, Langmuir, 2014, vol. 30, p. 2230.

    Article  CAS  PubMed  Google Scholar 

  32. Selvam, N.C.S., Vijaya, J.J., and Kennedy, L.J., Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures, Ind. Eng. Chem. Res., 2012, vol. 51, p. 16345.

    Google Scholar 

  33. Peng, W., Qu, S., Cong, G., and Wang, Z., Synthesis and structures of morphology-controlled ZnO nano- and microcrystals, Cryst. Growth Design, 2018, vol. 6, p. 1518.

    Article  CAS  Google Scholar 

  34. Jayathilake, D.S.Y., Nirmal Peiris, T.A., Sagu, J.S., and Potter, D.B., Microwave-assisted synthesis and processing of Al-doped, Ga-doped, and Al, Ga, Co doped ZnO for the pursuit of optimal conductivity for transparent conducting film fabrication, ACS Sust. Chem. Eng., 2017, vol. 5, p. 4820.

    Article  CAS  Google Scholar 

  35. Mary, J.A., Vijaya, J.J., Bououdina, M., Kennedy, L.J., and Daie, J.H., Phys. B, 2015, vol. 456, p. 344.

    Article  CAS  Google Scholar 

  36. Mahamuni, P.P., Patil, P.M., Dhanvade, M.J., Badiger, M.V., and Shadija, P.G., Investigation of structural, surface morphological, optical properties and first-principles study on electronic and magnetic properties of (Ce,Fe)-Co doped ZnO, Biochem. Biophys. Rep., 2019, vol. 17, p. 89.

    Google Scholar 

  37. Selvam, N.C.S., Vijaya, J.J., and Kennedy, L.J., Comparative studies on influence of morphology and La doping on structural, optical, and photocatalytic properties of zinc oxide nanostructures, J. Colloid Interface Sci., 2013, vol. 407, p. 215.

    Article  CAS  Google Scholar 

  38. Jesudoss, S.K., Vijaya, J.J., Selvam, N.C.S., Kombaiah, K., Sivachidambaram, M., Adinaveen, T., and Kennedy, L.J., Effects of Ba doping on structural, morphological, optical, and photocatalytic properties of self-assembled ZnO nanospheres, Clean. Techn. Environ. Policy, 2016, vol. 18, p. 729.

    Article  CAS  Google Scholar 

  39. Yathisha, R.O., Nayaka, Y.A., Manjunatha, P., Vinay, M.M., and Purushothama, H.T., Doping, structural, optical and electrical properties of Ni2+ doped CdO nanoparticles prepared by microwave combustion route, Microchem. J., 2019, vol. 145, p. 641.

    Article  CAS  Google Scholar 

  40. Fabbiyola, S., Sailaja, V., Kennedy, L.J., Bououdina, M., and Vijaya, J.J., Optical and magnetic properties of Ni-doped ZnO nanoparticles, J. Alloys Compd., 2017, vol. 694, p. 522.

    Article  CAS  Google Scholar 

  41. Bakr, N.A., Khodair, Z.T., and Hassan, S.M.A., Effect of substrate temperature on structural and optical properties of Cu2ZnSnS4 (CZTS) films prepared by chemical spray pyrolysis method, Res. J. Chem. Sci., 2015, vol. 5, no. 10, p. 51.

    CAS  Google Scholar 

  42. Giri, P.K., Bhattacharya, S., Singh, D.K., Kesavamoorthy, R., Panigrahi, B.K., and Nair, K.G.M., High temperature ferromagnetism and optical properties of Co doped ZnO nanoparticles, J. Appl. Phys., 2007, vol. 102, p. 8.

    Article  CAS  Google Scholar 

  43. Mia, M.N.H., Pervez, M.F., Hossin, M.K., Rahman, M.R., and Ghosh, H.K., Influence of Mg content on tailoring optical bandgap of Mg-doped ZnO thin film prepared by sol–gel method, Res. Phys., 2017, vol. 7, p. 2689.

    Google Scholar 

  44. Yathisha, R.O., Nayaka, Y.A., Manjunatha, P., Purushothama, H.T., Vinay, M.M., and Basavarajappa, K.V., Study on the effect of Zn2+ doping on optical and electrical properties of CuO nanoparticles, Phys. E, 2019, vol. 108, p. 257.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to UGC and SERB, New Delhi for providing financial support in the form of major research Project. The authors wish to thank Dept. of Chemistry, Kuvempu University, for providing laboratory facilities to carry out this work. The authors are also thankful the NIE, Mysore for their support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Arthoba Nayaka.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yathisha, R.O., Arthoba Nayaka, Y. Structural, Optical and Electrical Properties of ZnO Nanostructures Synthesized under Different Microwave Power. Russ J Electrochem 57, 784–794 (2021). https://doi.org/10.1134/S1023193520120277

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520120277

Keywords:

Navigation