Skip to main content
Log in

Methanol Electrooxidation on Pt/RuO2 Catalyst

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A catalytic coating, composed of a mixture of nanocrystals of Pt and RuO2, used for oxidation of CH3OH, was formed by the thermal procedure. The size of the RuO2 nanocrystals was increasing and of Pt was decreasing with increasing the content of RuO2. The optimal coating composition depended on potential. At more positive potentials, the optimal coatings contained lower amounts of RuO2. The oxidation reaction of CH3OH on the coatings with the RuO2 content higher than optimal, was determined by dehydrogenization of CH3OH. At lower amounts of RuO2, oxidation of CH3OH was determined by the oxidation reaction of intermediates COad with oxy species of ruthenium. The catalytic effect was caused by a bifunctional mechanism. The bifunctional mechanism is based on the fact that oxy species were formed on Ru at more negative potentials than on Pt. These oxy species oxidized COad intermediates, bound to adjacent Pt atoms and thus discharged them for dehydrogenation of the subsequent CH3OH molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Yu, X. and Pickup, P.G., Recent advances in direct formic acid fuel cells (DFAFC), J. Power Sources, 2008, vol. 182, p. 124.

    Article  CAS  Google Scholar 

  2. Rice, C., Ha, S., Masel, R.I., Waszczuk, P., Wieckowski, A., and Barnard, T., Direct formic acid fuel cells, J. Power Sources, 2002, vol. 111, p. 83.

    Article  CAS  Google Scholar 

  3. Liu, H., Song, C., Zhang, L., Zhang, J., Wang, H., and Wilkinson, D.P., A review of anode catalysis in the direct methanol fuel cell, J. Power Sources, 2006, vol. 155, p. 95.

    Article  CAS  Google Scholar 

  4. Zhao, X., Yin, M., Ma, L., Liang, L., Liu, C., Liao, J., Lu, T., and Xing, W., Recent advances in catalysts for direct methanol fuel cells, Energy Environ. Sci., 2011, vol. 4, p. 2736.

    Article  CAS  Google Scholar 

  5. Kakati, N., Maiti, J., Lee, S.H., Jee, S.H., Viswanathan, B., and Yoon, Y.S., Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt–Ru?, Chem. Rev., 2014, vol. 114, p. 12397.

    Article  CAS  PubMed  Google Scholar 

  6. Heinzel, A. and Barragán, V.M., A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells, J. Power Sources, 1999, vol. 84, p. 70.

    Article  CAS  Google Scholar 

  7. Petrii, O.A., The progress in understanding the mechanism of methanol and formic acid electrooxidation on platinum group metals, Russ. J. Electrochem., 2019, vol. 55, p. 1.

    Article  CAS  Google Scholar 

  8. Petrii, O.A., Pt–Ru electrocatalysts for fuel cells: a representative review, J. Solid State Electrochem., 2008, vol. 12, p. 609.

    Article  CAS  Google Scholar 

  9. DeSario, D.Y. and DiSalvo, F.J., Ordered intermetallic Pt–Sn nanoparticles: exploring ordering behavior across the bulk phase diagram, Chem. Mater., 2014, vol. 26, p. 2750.

    Article  CAS  Google Scholar 

  10. Abe, H., Matsumoto, F., Alden, L.R., Warren, S.C., Abruña, H.D., and DiSalvo, F.J., Electrocatalytic performance of fuel oxidation by Pt3Ti nanoparticles, J. Am. Chem. Soc., 2008, vol. 130, p. 5452.

    Article  CAS  PubMed  Google Scholar 

  11. Cui, Z., Chen, H., Zhao, M., Marshall, D., Yu, Y., Abruña, H., and DiSalvo, F.J., Synthesis of structurally ordered Pt3Ti and Pt3V nanoparticles as methanol oxidation catalysts, J. Am. Chem. Soc., 2014, vol. 136, p. 10206.

    Article  CAS  PubMed  Google Scholar 

  12. Kang, Y. and Murray, C.B., Synthesis and electrocatalytic properties of cubic Mn−Pt nanocrystals (nanocubes), J. Am. Chem. Soc., 2010, vol. 132, p. 7568.

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh, T., Leonard, B.M., Zhou, Q., and DiSalvo, F.J., Pt alloy and intermetallic phases with V, Cr, Mn, Ni, and Cu: synthesis as nanomaterials and possible applications as fuel cell catalysts, Chem. Mater., 2010, vol. 22, p. 2190.

    Article  CAS  Google Scholar 

  14. Yang, H., Zhang, J., Sun, K., Zou, S., and Fang, J., Enhancing by weakening: electrooxidation of methanol on Pt3Co and Pt nanocubes, Angew. Chem. Int. Ed., 2010, vol. 49, p. 6848.

    Article  CAS  Google Scholar 

  15. Liu, L., Pippel, E., Scholz, R., and Gösele, U., Nanoporous Pt−Co alloy nanowires: fabrication, characterization, and electrocatalytic properties, Nano Lett., 2009, vol. 9, p. 4352.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, D., Xin, H.L., Hovden, R., Wang, H., Yu, Y., Muller, D.A., DiSalvo, F.J., and Abruna, H.D., Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, Nat. Mater., 2013, vol. 12, p. 8.

    Google Scholar 

  17. Chen, W., Kim, J., Sun, S., and Chen, S., Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid, Langmuir, 2007, vol. 23, p. 11303.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, D.Y., Chou, H.L., Lin, Y.C., Lai, F.J., Chen, C.H., Lee, J.F., Hwang, B.J. and Chen, C.C., Simple replacement reaction for the preparation of ternary Fe1 ‒ xPtRux nanocrystals with superior catalytic activity in methanol oxidation reaction, J. Am. Chem. Soc., 2012, vol. 134, p. 10011.

    Article  CAS  PubMed  Google Scholar 

  19. Casado-Rivera, E., Volpe, D.J., Alden, L., Lind, C., Downie, C., Vázquez-Alvarez, T., Angelo, A.C.D., DiSalvo, F.J., and Abruña, H.D., Electrocatalytic activity of ordered intermetallic phases for fuel cell applications, J. Am. Chem. Soc., 2004, vol. 126, p. 4043.

    Article  CAS  PubMed  Google Scholar 

  20. Ji, X., Lee, K.T., Holden, R., Zhang, L., Zhang, J., Botton, G.A., Couillard, M., and Nazar, L.F., Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes, Nat. Chem., 2010, vol. 2, p. 286.

    Article  CAS  PubMed  Google Scholar 

  21. Matsumoto, F., Roychowdhury, C., DiSalvo, F.J., and Abruña, H.D., Electrocatalytic activity of ordered intermetallic PtPb nanoparticles prepared by borohydride reduction toward formic acid oxidation, J. Electrochem. Soc., 2008, vol. 155, p. B148.

    Article  CAS  Google Scholar 

  22. Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., and Marković, N.M., Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science, 2007, vol. 315, p. 493.

    Article  CAS  PubMed  Google Scholar 

  23. Miura, A., Wang, H., Leonard, B.M., Abruña, H.D., and DiSalvo, F.J., Synthesis of intermetallic PtZn nanoparticles by reaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts, Chem. Mater., 2009, vol. 21, p. 2661.

    Article  CAS  Google Scholar 

  24. Kang, Y., Pyo, J.B., Ye, X., Gordon, T.R., and Murray, C.B., Synthesis, shape control, and methanol electro-oxidation properties of Pt–Zn alloy and Pt3Zn intermetallic nanocrystals, ACS Nano, 2012, vol. 6, p. 5642.

    Article  CAS  PubMed  Google Scholar 

  25. Gregoire, J.M., Kostylev, M., Tague, M.E., Mutolo, P.F., van Dover, R.B., DiSalvo, F.J., and Abruña, H.D., High-throughput evaluation of dealloyed Pt–Zn composition-spread thin film for methanol-oxidation catalysis, J. Electrochem. Soc., 2009, vol. 156, p. B160.

    Article  CAS  Google Scholar 

  26. Chen, Q., Zhang, J., Jia, Y., Jiang, Z., Xie, Z., and Zheng, L., Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances, Nanoscale, 2014, vol. 6, p. 7019.

    Article  CAS  PubMed  Google Scholar 

  27. Xu, D., Liu, Z.P., Yang, H.Z., Liu, Q.S., Zhang, J., Fang, J.Y., Zou, S.Z., and Sun, K., Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes, Angew. Chem. Int. Ed., 2009, vol. 48, p. 4217.

    Article  CAS  Google Scholar 

  28. Xia, B.Y., Wu, H.B., Wang, X., and Lou, X.W., One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction, J. Am. Chem. Soc., 2012, vol. 134, p. 13934.

    Article  CAS  PubMed  Google Scholar 

  29. Sun, X., Jiang, K., Zhang, N., Guo, S., and Huang, X., Crystalline control of {111} bounded Pt3Cu nanocrystals: multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties, ACS Nano, 2015, vol. 9, p. 7634.

    Article  CAS  PubMed  Google Scholar 

  30. Saleem, F., Zhang, Z., Xu, B., Xu, X., He, P., and Wang, X., Ultrathin Pt–Cu nanosheets and nanocones, J. Am. Chem. Soc., 2013, vol. 135, p. 18304.

    Article  CAS  PubMed  Google Scholar 

  31. Xia, Z., Zhang, P., Feng, G., Xia, D., and Zhang, J., Crossed PtCoCu alloy nanocrystals with high-index facets as highly active catalyst for methanol oxidation reaction, Adv. Mater. Interfaces, 2018, vol 5, p. 1.

    Article  CAS  Google Scholar 

  32. Wakisaka, M., Mitsui, S., Hirose, Y., Kawashima, K., Uchida, H., and Watanabe, M., Electronic structures of Pt−Co and Pt−Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells atudied by EC−XPS, J. Phys. Chem. B, 2006, vol. 110, p. 23489.

    Article  CAS  PubMed  Google Scholar 

  33. Gasteiger, H.A., Markovic, N.M., and Ross, P.N., Jr., Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface, J. Phys. Chem., 1995, vol. 99, p. 8945.

    Article  CAS  Google Scholar 

  34. Grgur, B.N., Zhuang, G., Markovic, N.M., and Ross, P.N., Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface, J. Phys. Chem. B, 1997, vol. 101, p. 3910.

    Article  CAS  Google Scholar 

  35. Gasteiger, H.A., Markovic, N., Ross, P.N., Jr., and Cairns, E.J., Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys, J. Phys. Chem., 1994, vol. 98, p. 617.

    Article  CAS  Google Scholar 

  36. Rigsby, M.A., Zhou, W.P., Lewera, A., Duong, H.T., Bagus, P.S., Jaegermann, W., Hunger, R., and Wieckowski, A., Experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru, J. Phys. Chem. C, 2008, vol. 112, p. 15595.

    Article  CAS  Google Scholar 

  37. Ataee-Esfahani, H., Liu, J., Hu, M., Miyamoto, N., Tominaka, S., Wu, K.C.W., and Yamauchi, Y., Mesoporous metallic cells: design of uniformly sized hollow mesoporous Pt–Ru particles with tunable shell thicknesses, Small, 2013, vol. 9, p. 1047.

    Article  CAS  PubMed  Google Scholar 

  38. Garrick, T.R., Diao, W., Tengco, J.M., Stach, E.A., Senanayake, S.D., Chen, D.A., Monnier, J.R., and Weidner, J.W., The effect of the surface composition of Ru–Pt bimetallic catalysts for methanol oxidation, Electrochim. Acta, 2016, vol. 195, p. 106.

    Article  CAS  Google Scholar 

  39. Tian, M., Shi, S., Shen, Y., and Yin, H., PtRu alloy nanoparticles supported on nanoporous gold as an efficient anode catalyst for direct methanol fuel cell, Electrochim. Acta, 2019, vol. 293, p. 390.

    Article  CAS  Google Scholar 

  40. Lu, S., Eid, K., Ge, D., Guo, J., Wang, L., Wang, H., and Gu, H., One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction, Nanoscale, 2017, vol. 9, p. 1033.

    Article  CAS  PubMed  Google Scholar 

  41. Feng, L., Li, K., Chang, J., Liu, C., and Xing, W., Nanostructured PtRu/C catalyst promoted by CoP as an efficient and robust anode catalyst in direct methanol fuel cells, Nano Energy, 2015, vol. 15, p. 462.

    Article  CAS  Google Scholar 

  42. Feng, C., Takeuchi, T., Abdelkareem, M.A., Tsujiguchi, T., and Nakagawa, N., Carbon–CeO2 composite nanofibers as a promising support for a PtRu anode catalyst in a direct methanol fuel cell, J. Power Sources, 2013, vol. 242, p. 57.

    Article  CAS  Google Scholar 

  43. Guo, L., Chen, S., Li, L., and Wei, Z., A CO-tolerant PtRu catalyst supported on thiol-functionalized carbon nanotubes for the methanol oxidation reaction, J. Power Sources, 2014, vol. 247, p. 360.

    Article  CAS  Google Scholar 

  44. La-Torre-Riveros, L., Guzman-Blas, R., Méndez-Torres, A.E., Prelas, M., Tryk, D.A., and Cabrera, C.R., Diamond nanoparticles as a dupport for Pt and PtRu catalysts for direct methanol fuel cells, ACS Appl. Mater. Interfaces, 2012, vol. 4, p. 1134.

    Article  CAS  PubMed  Google Scholar 

  45. Cheng, Y., Xu, C., Shen, P.K., and Jiang, S.P., Effect of nitrogen-containing functionalization on the electrocatalytic activity of PtRu nanoparticles supported on carbon nanotubes for direct methanol fuel cells, Appl. Catal. B: Environ., 2014, vol. 158-159, p. 140.

    Article  CAS  Google Scholar 

  46. Nethravathi, C., Anumol, E.A., Rajamathi, M., and Ravishankar, N., Highly dispersed ultrafine Pt and PtRu nanoparticles on graphene: formation mechanism and electrocatalytic activity, Nanoscale, 2011, vol. 3, p. 569.

    Article  CAS  PubMed  Google Scholar 

  47. Belmesov, A.A., Baranov, A.A., and Levchenko, A.V., Anodic electrocatalysts for fuel cells based on Pt/Ti1 ‒ xRuxO2, Russ. J. Electrochem., 2018, vol. 54, p. 493.

    Article  CAS  Google Scholar 

  48. Spasojevic, M., Ribic-Zelenovic, L., Spasojevic, M., and Trisovic, T., The mixture of nanoparticles of RuO2 and Pt supported on Ti as an efficient catalyst for direct formic acid fuel cell, Russ. J. Electrochem., 2019, vol. 55, p. 1350.

    Article  CAS  Google Scholar 

  49. Spasojevic, M., Spasojevic, M., and Ribic-Zelenovic, L., A catalyst coated electrode for electrochemical formaldehyde oxidation, Monatsh. Chem.—Chem. Mon., 2020, vol. 151, p. 33.

    Article  CAS  Google Scholar 

  50. Profeti, L.P.R., Profeti, D., and Olivi, P., Pt–RuO2 electrodes prepared by thermal decomposition of polymeric precursors as catalysts for direct methanol fuel cell applications, Int. J. Hydrogen Energy, 2009, vol. 34, p. 2747.

    Article  CAS  Google Scholar 

  51. Deng, Y.J., Tian, N., Zhou, Z.Y., Huang, R., Liu, Z.L., Xiao, J., and Sun, S.G., Alloy tetrahexahedral Pd–Pt catalysts: enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure, Chem. Sci., 2012, vol. 3, p. 1157.

    Article  CAS  Google Scholar 

  52. Zhu, E., Li, Y., Chiu, C.Y., Huang, X., Li, M., Zhao, Z., Liu, Y., Duan, X., and Huang, Y., In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability, Nano Res., 2016, vol. 9, p. 149.

    Article  CAS  Google Scholar 

  53. Huang, X., Zhao, Z., Fan, J., Tan, Y., and Zheng, N., Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets, J. Am. Chem. Soc., 2011, vol. 133, p. 4718.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, H., Jeong, H.Y., Imura, M., Wang, L., Radhakrishnan, L., Fujita, N., Castle, T., Terasaki, O., and Yamauchi, Y., Shape- and size-controlled synthesis in hard templates: sophisticated chemical reduction for mesoporous monocrystalline platinum nanoparticles, J. Am. Chem. Soc., 2011, vol. 133, p. 14526.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, Z.C., Hui, J.F., Liu, Z.C., Zhang, X., Zhuang, J., and Wang, X., Glycine-mediated syntheses of Pt concave nanocubes with high-index {hk0} facets and their enhanced electrocatalytic activities, Langmuir, 2012, vol. 28, p. 14845.

    Article  CAS  PubMed  Google Scholar 

  56. Sarmoor, S.S., Hoseini, S.J., Fath, R.H., Roushani, M., and Bahrami, M., Facile synthesis of PtSnZn nanosheet thin film at oil–water interface by use of organometallic complexes: an efficient catalyst for methanol oxidation and p-nitrophenol reduction reactions, Appl. Organometal. Chem., 2018, vol. 32, p. 1.

    Article  CAS  Google Scholar 

  57. Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H.L., Snyder, J.D., Li, D., Herron, J.A., Mavrikakis, M., Chi, M., More, K.L., Li, Y., Markovic, N.M., Somorjai, G.A., Yang, P., and Stamenkovic, V.R., Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces, Science, 2014, vol. 343, p. 1339.

    Article  CAS  PubMed  Google Scholar 

  58. Ding, J., Zhu, X., Bu, L., Yao, J., Guo, J., Guo, S., and Huang, X., Highly open rhombic dodecahedral PtCu nanoframes, Chem. Commun., 2015, vol. 51, p. 9722.

    Article  CAS  Google Scholar 

  59. Luo, S. and Shen, P.K., Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis, ACS Nano, 2017, vol. 11, p. 11946.

    Article  CAS  PubMed  Google Scholar 

  60. Bu, L., Guo, S., Zhang, X., Shen, X., Su, D., Lu, G., Zhu, X., Yao, J., Guo, J., and Huang, X., Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis, Nat. Commun., 2016, vol. 7, p. 1.

    Article  CAS  Google Scholar 

  61. Bu, L., Ding, J., Guo, S., Zhang, X., Su, D., Zhu, X., Yao, J., Guo, J., Lu, G., and Huang, X., A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts, Adv. Mater., 2015, vol. 27, p. 7204.

    Article  CAS  PubMed  Google Scholar 

  62. Xia, B.Y., Wu, H.B., Li, N., Yan, Y., Lou, X.W., and Wang, X., One-pot synthesis of Pt–Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties, Angew. Chem. Int. Ed., 2015, vol. 54, p. 3797.

    Article  CAS  Google Scholar 

  63. Gong, M., Fu, G., Chen, Y., Tang, Y., and Lu, T., Autocatalysis and selective oxidative etching induced synthesis of platinum-copper bimetallic alloy nanodendrites electrocatalysts, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 7301.

    Article  CAS  PubMed  Google Scholar 

  64. Wang, D.Y., Chou, H.L., Cheng, C.C., Wu, Y.H., Tsai, C.M., Lin, H.Y., Wang, Y.L., Hwang, B.J., and Chen, C.C., FePt nanodendrites with high-index facets as active electrocatalysts for oxygen reduction reaction, Nano Energy, 2015, vol. 11, p. 631.

    Article  CAS  Google Scholar 

  65. Nosheen, F., Zhang, Z., Xiang, G., Xu, B., Yang, Y., Saleem, F., Xu, X., Zhang, J., and Wang, X., Three-dimensional hierarchical Pt–Cu superstructures, Nano Res., 2015, vol. 8, p. 832.

    Article  CAS  Google Scholar 

  66. Wang, C., Chen, D.P., Sang, X., Unocic, R.R., and Skrabalak, S.E., Size-dependent disorder–order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts, ACS Nano, 2016, vol. 10, p. 6345.

    Article  CAS  PubMed  Google Scholar 

  67. Kang, X., Miao, K., Guo, Z., Zou, J., Shi, Z., Lin, Z., Huang, J., and Chen, S., PdRu alloy nanoparticles of solid solution in atomic scale: size effects on electronic structure and catalytic activity towards electrooxidation of formic acid and methanol, J. Catal., 2018, vol. 364, p. 183.

    Article  CAS  Google Scholar 

  68. Park, S., Xie, Y., and Weaver, M.J., Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation, Langmuir, 2002, vol. 18, p. 5792.

    Article  CAS  Google Scholar 

  69. Tian, N., Zhou, Z.Y., Sun, S.G., Ding, Y., and Wang, Z.L., Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity, Science, 2007, vol. 316, p. 732.

    Article  CAS  PubMed  Google Scholar 

  70. Quan, Z., Wang, Y., and Fang, J., High-index faceted noble metal nanocrystals, Acc. Chem. Res., 2013, vol. 46, p. 191.

    Article  CAS  PubMed  Google Scholar 

  71. Waszczuk, P., Lu, G.Q., Wieckowski, A., Lu, C., Rice, C., and Masel, R.I., UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis, Electrochim. Acta, 2002, vol. 47, p. 3637.

    Article  CAS  Google Scholar 

  72. Lu, C., Rice, C., Masel, R.I., Babu, P.K., Waszczuk, P., Kim, H.S., Oldfield, E., and Wieckowski, A., UHV, Electrochemical NMR, and electrochemical studies of platinum/ruthenium fuel cell catalysts, J. Phys. Chem. B, 2002, vol. 106, p. 9581.

    Article  CAS  Google Scholar 

  73. Watanabe, M. and Motoo, S., Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms, J. Electroanal. Chem., 1975, vol. 60, p. 267.

    Article  CAS  Google Scholar 

  74. Li, X., Liu, J., Huang, Q., Vogel, W., Akins, D.L., and Yang, H., Effect of heat treatment on stability of gold particle modified carbon supported Pt–Ru anode catalysts for a direct methanol fuel cell, Electrochim. Acta, 2010, vol. 56, p. 278.

    Article  CAS  Google Scholar 

  75. Rolison, D.R., Hagans, P.L., Swider, K.E., and Long, J.W., Role of hydrous ruthenium oxide in Pt−Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity, Langmuir, 1999, vol. 15, p. 774.

    Article  CAS  Google Scholar 

  76. Long, J.W., Stroud, R.M., Swider-Lyons, K.E., and Rolison, D.R., How to make electrocatalysts more active for direct methanol oxidation-avoid PtRu bimetallic alloys, J. Phys. Chem. B, 2000, vol. 104, p. 9772.

    Article  CAS  Google Scholar 

  77. Galizzioli, D., Tantardini, F., and Trasatti, S., Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions, J. Appl. Electrochem., 1975, vol. 5, p. 203.

    Article  CAS  Google Scholar 

  78. Burke, L.D. and O’Neill, J.F., Some aspects of the chlorine evolution reaction at ruthenium dioxide anodes, J. Electroanal. Chem., 1979, vol. 101, p. 341.

    Article  CAS  Google Scholar 

  79. Franaszczuk, K. and Sobkowski, J., The influence of ruthenium adatoms on the oxidation of chemisorbed species of methanol on a platinum electrode by a radiochemical method, J. Electroanal. Chem., 1992, vol. 327, p. 235.

    Article  CAS  Google Scholar 

  80. Comninellis, Ch. and Vercesi, G.P., Problems in DSA® coating deposition by thermal decomposition, J. Appl. Electrochem., 1991, vol. 21, p. 136.

    Article  CAS  Google Scholar 

  81. Comninellis, Ch. and Vercesi, G.P., Characterization of DSA®-type oxygen evolving electrodes: choice of a coating, J. Appl. Electrochem., 1991, vol. 21, p. 335.

    Article  CAS  Google Scholar 

  82. Weast, R.C., Handbook of Chemistry and Physics, 55th ed., Cleveland: CRC Press, 1974–1975.

  83. Spasojevic, M.D., Krstajic, N.V., and Jaksic, M.M., Structure, properties and optimization of an anodic electrocatalyst: RuO2/TiO2 on titanium, J. Mol. Catal., 1987, vol. 40, p. 311.

    Article  CAS  Google Scholar 

  84. Spasojevic, M., Ribic-Zelenovic, L., and Spasojevic, P., Microstructure of new composite electrocatalyst and its anodic behavior for chlorine and oxygen evolution, Ceram. Int., 2012, vol. 38, p. 5827.

    Article  CAS  Google Scholar 

  85. Spasojevic, M., Krstajic, N., Spasojevic, P., and Ribic-Zelenovic, L., Modelling current efficiency in an electrochemical hypochlorite reactor, Chem. Eng. Res. Des., 2015, vol. 93, p. 591.

    Article  CAS  Google Scholar 

  86. Hadzi-Jordanov, S., Angerstein-Kozlowska, H., Vukovic, M., and Conway, B.E., The state of electrodeposited hydrogen at ruthenium electrodes, J. Phys. Chem., 1977, vol. 81, p. 2271.

    Article  CAS  Google Scholar 

  87. Ticanelli, E., Beery, J.G., Paffett, M.T., and Gottesfeld, S., An electrochemical, ellipsometric, and surface science investigation of the PtRu bulk alloy surface, J. Electroanal. Chem., 1989, vol. 258, p. 61.

    Article  CAS  Google Scholar 

  88. Hu, C.C., Lee, C.H., and Wen, T.C., Oxygen evolution and hypochlorite production on Ru–Pt binary oxides, J. Appl. Electrochem., 1996, vol. 26, p. 72.

    Article  CAS  Google Scholar 

  89. Park, I.S., Lee, K.S., Choi, J.H., Park, H.Y., and Sung, Y.E., Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electro-oxidation, J. Phys. Chem. C, 2007, vol. 111, p. 19126.

    Article  CAS  Google Scholar 

Download references

AKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of the Republic of Serbia through Project Ref. no. 172 057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica Spasojević.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milica Spasojević, Ribić-Zelenović, L., Spasojević, M. et al. Methanol Electrooxidation on Pt/RuO2 Catalyst. Russ J Electrochem 57, 795–807 (2021). https://doi.org/10.1134/S1023193520120253

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520120253

Keywords:

Navigation