Skip to main content
Log in

A Novel Molecular Imprint Polymer Quartz Crystal Microbalance Nanosensor for the Detection of Andrographolide in the Medicinal Plant Extract

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A novel quartz crystal microbalance (QCM) sensor based on molecular imprint polymer (MIP) has been developed for the detection of andrographolide in the medicinal plant extracts. The MIP and non-imprinted polymer (NIP) were synthesized using a precipitation polymerization method. The polymers were characterized by Fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM) and cyclic voltammetry. Both MIP and NIP were deposited on quartz crystal platform using an electro-polymerization method. A linear Langmuir isotherm model revealed that the MIP-QCM sensor has the maximum binding sites 18.02 ng cm–2. It was found that 92.8% of andrographolide was detected in 0.10 μg mL–1 of plant extract, and the limits of detection and quantification values were 1.21 and 4.02 ng cm–2, respectively. This research showed that the andrographolide imprinted polymer could be used to detect and quantify andrographolide in Andrographis paniculata plant extract in both analytical separation and sensor development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Katiyar, C., Gupta, A., Kanjilal, S., and Katiyar, S., Drug discovery from plant sources: an integrated approach, Int. Q. J. Res. Ayurveda, 2012, vol. 33, p. 10.

    Article  Google Scholar 

  2. Islam, A.K.M.S., Ismail, Z., Ahmad, M.N., Othman, A.R., Dharmaraj, S., and Shakaff, A.Y.M., Taste profiling of centella asiatica by a taste sensor, Sens. Mater., 2003, vol. 15, p. 209.

    CAS  Google Scholar 

  3. Xu, F.F., Fu, S.J., Gu, S.P., Wang, Z.M., Wang, Z.Z., He, X., and Xiao, W., Simultaneous determination of andrographolide, dehydroandrographolide and neoandrographolide in dog plasma by LC-MS/MS and its application to a dog pharmacokinetic study of Andrographis paniculata tablet, J. Chromatogr. B, 2015, vol. 990, p. 125.

    Article  CAS  Google Scholar 

  4. Li, Q.Q., Zhang, J., Liu, J.H., and Yu, B.Y., Morphological and chemical studies of artificial Andrographis paniculata polyploids, Chin. J. Nat. Med., 2018, vol. 16, p. 81.

    CAS  PubMed  Google Scholar 

  5. Kurzawa, M., Filipiak-Szok, A., Kłodzinska, E., and Szlyk, E., Determination of phytochemicals, antioxidant activity and total phenolic content in Andrographis paniculata using chromatographic methods, J. Chromatogr. B, 2015, vol. 995–996, p. 101.

    Article  Google Scholar 

  6. Soo, H.L., Quah, S.Y., Sulaiman, I., Sagineedu, S.R., Lim, J.C.W., and Stanslas, J., Advances and challenges in developing andrographolide and its analogues as cancer therapeutic agents, Drug Discovery Today, 2019, vol. 24, p. 1890.

    Article  CAS  Google Scholar 

  7. Song, Y.X., Liu, S.P., Jin, Z., Qin, J.F., and Jiang, Z.Y., Qualitative and quantitative analysis of Andrographis paniculata by rapid resolution liquid chromatography/time-of-flight mass spectrometry, Molecules, 2013, vol. 18, p. 12192.

    Article  CAS  Google Scholar 

  8. Lok, C.M. and Son, R., Review article application of molecularly imprinted polymers in food sample analysis—a perspective, Int. Food Res. J., 2009, vol. 140, p. 127.

    Google Scholar 

  9. Chen, L., Xu, S., and Li, J., Recent advances in molecular imprinting technology: current status, challenges and highlighted applications, Chem. Soc. Rev., 2011, vol. 40, p. 2922.

    Article  CAS  Google Scholar 

  10. Shen, X. and Ye, L., Interfacial molecular imprinting in nanoparticle-stabilized emulsions, Macromolecules, 2011, vol. 44, p. 5631.

    Article  CAS  Google Scholar 

  11. Granado, V.L.V., Gomes, M.T.S.R., and Rudnitskaya, A., Molecularly imprinted polymer thin-film electrochemical sensors, in Biomimetic Sensing, Fitzgerald, J. and Fenniri, H., Eds., New York: Humana, 2019.

    Google Scholar 

  12. Sohn, S. and Kim, D., Modification of Langmuir isotherm in solution systems – definition and utilization of concentration dependent factor, Chemosphere, 2005, vol. 58, p. 115.

    Article  CAS  Google Scholar 

  13. Pinsrithong, S. and Bunkoed, O., Hierarchical porous nanostructured polypyrrole-coated hydrogel beads containing reduced graphene oxide and magnetite nanoparticles for extraction of phthalates in bottled drinks, J. Chromatogr. A, 2018, vol. 1570, p. 19.

    Article  CAS  Google Scholar 

  14. Pardeshi, S., Dhodapkar, R., and Kumar, A., Molecularly imprinted microspheres and nanoparticles prepared using precipitation polymerisation method for selective extraction of gallic acid from Emblica officinalis, Food Chem., 2014, vol. 146, p. 385.

    Article  CAS  Google Scholar 

  15. Farrington, K., Magner, E., and Regan, F., Predicting the performance of molecularly imprinted polymers: selective extraction of caffeine by molecularly imprinted solid phase extraction, Anal. Chim. Acta, 2006, vol. 566, p. 60.

    Article  CAS  Google Scholar 

  16. Sharma, P.S., Pietrzyk-Le, A., D’Souza, F., and Kutner, W., Electrochemically synthesized polymers in molecular imprinting for chemical sensing, Bioanal. Chem., 2012, vol. 402, p. 3177.

    Article  CAS  Google Scholar 

  17. Hu, Y., Pan, J., Zhang, K., Lian, H., and Li, G., Novel applications of molecularly-imprinted polymers in sample preparation, TrAC Trends Anal. Chem., 2013, vol. 43, p. 37.

    Article  CAS  Google Scholar 

  18. Sanjuán, A.M., Reglero Ruiz, J.A., García, F.C., and García, J.M., Recent developments in sensing devices based on polymeric systems, React. Funct. Polym., 2018, vol. 133, p. 103.

    Article  Google Scholar 

  19. Hepel, M. and Cateforis, E., Studies of copper corrosion inhibition using Electrochemical Quartz Crystal Nanobalance and Quartz Crystal Immittance techniques, Electrochim. Acta, 2001, vol. 46, p. 3801.

    Article  CAS  Google Scholar 

  20. Stobiecka, M., Deeb, J., and Hepel M., Molecularly templated polymer matrix films for biorecognition processes: sensors for evaluating oxidative stress and redox buffering capacity, Electrochem. Soc. Trans., 2009, vol. 19, p. 15.

    CAS  Google Scholar 

  21. Cao, Y., Feng, T., Xu, J., and Xue, C., Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors, Biosens. Bioelectron., 2019, vol. 141, p. 111447.

    Article  CAS  Google Scholar 

  22. Ayankojo, A. G., Reut, J., Boroznjak, R., Opik, A., and Syritski, V., Molecularly imprint, ed poly(meta-phenylenediamine) based QCM sensor for detecting Amoxicillin, Sens. Actuators B, 2018, vol. 258, p. 766.

  23. Orihara, K., Hikichi, A., Arita, T., Muguruma, H., and Yoshimi, Y., Heparin molecularly imprinted polymer thin flm on gold electrode by plasma-induced graft polymerization for label-free biosensor, J. Pharm. Biomed. Anal., 2018, vol. 151, p. 324.

    Article  CAS  Google Scholar 

  24. Ma, X.T., He, X.W., Li, W.Y., and Zhang, Y.K., Oriented surface epitope imprinted polymer-based quartz crystal microbalance sensor for cytochrome c, Talanta, 2019, vol. 191, p. 222.

    Article  CAS  Google Scholar 

  25. Islam, A.K.M.S., Krishnan, H., Singh, H., and Ahmad, M.N., A noble molecular imprint polymer biosensor for caffeic acid detection in orthosiphon Stamineus extracts, J. Teknol., 2015, vol. 77, p. 97.

    Google Scholar 

  26. Krishnan, H., Islam, A.K.M.S., Hamzah, Z., Nadaraja, P., and Ahmad, M.N., A novel molecular imprint polymer synthesis for solid phase extraction of andrographolide, Indones. J. Chem., 2019, vol. 19, p. 219.

    Article  CAS  Google Scholar 

  27. Mosch, H.L.K.S., Akintola, O., Plass, W., Höppener, S., Schubert, U.S., and Ignaszak, A., Specific surface versus electrochemically active area of the carbon/polypyrrole capacitor: correlation of ion dynamics studied by an electrochemical quartz crystal microbalance with BET surface, Langmuir, 2016, vol. 32, p. 4440.

    Article  CAS  Google Scholar 

  28. Renkecz, T., László, K., and Horváth, V., Molecularly imprinted microspheres prepared by precipitation polymerization at high monomer concentrations, Mol. Imprinting, 2014, vol. 2, p. 1.

    Article  CAS  Google Scholar 

  29. Spivak, D.A., Optimization, evaluation, and characterization of molecularly imprinted polymers, Adv. Drug Delivery Rev., 2005, vol. 57, p. 1779.

    Article  CAS  Google Scholar 

  30. Yao, C., Zhu, T., Qi, Y., Zhao, Y., Xia, H., and Fu, W., Development of a quartz crystal microbalance biosensor with aptamers as bio-recognition element, Sensors, 2010, vol. 10, p. 5859.

    Article  CAS  Google Scholar 

  31. Hepel, M., Electrode-solution interface studied with electrochemical quartz crystal nanobalance, in Interfacial Electrochemistry. Theory, Experiment, and Applications, Wieckowski, A., Ed., New York: Marcel Dekker, 1999, p. 599.

    Google Scholar 

  32. Dabrowski, M., Lach, P., Cieplak, M., and Kutner, W., Nanostructured molecularly imprinted polymers for protein chemosensing, Biosen. Bioelectron., 2018, vol. 102, p. 17.

    Article  CAS  Google Scholar 

  33. Alenazi, N.A., Manthorpe, J.M., and Lai, E.P.C., Selectivity enhancement in molecularly imprinted polymers for binding of bisphenol A, Sensors, 2016, vol. 16, p. 1697.

    Article  Google Scholar 

  34. Gultekin, A., Karanfil, G., Kus, M., Sonmezoglu, S., and Say, R., Preparation of MIP-based QCM nanosensor for detection of caffeic acid, Talanta, 2014, vol. 119, p. 533.

    Article  CAS  Google Scholar 

  35. Kartal, F, Çimen, D., Bereli, N., and Denizli, A., Molecularly imprinted polymer based quartz crystal microbalance sensor for the clinical detection of insulin, Mater. Sci. Eng. C, 2019, vol. 97, p. 730.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to Universiti Sains Malaysia for providing the financial support of this project Bridging grant no. 304.PKIMIA.6316279 and Research Management Centre, IIUM grant no. RPDF19 002 0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. M. Shafiqul Islam.

Ethics declarations

The authors declare that we do not have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiqul Islam, A.K., Krishnan, H., Ahmad, M.N. et al. A Novel Molecular Imprint Polymer Quartz Crystal Microbalance Nanosensor for the Detection of Andrographolide in the Medicinal Plant Extract. Russ J Electrochem 57, 671–679 (2021). https://doi.org/10.1134/S1023193520120228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520120228

Keywords:

Navigation