Skip to main content
Log in

Highly sensitive and selective response of agnuside using a chemical sensor based on molecularly imprinted polymer/Pd/MWCNT nanocomposite at the surface of glassy carbon electrode

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Agnuside has beneficial effects on the body, but its high concentration in kidney can be harmful to the intestine. In this study, we tried to improve our previous report for sensitive and selective measuring agnuside using square wave voltammetry, the technique which have not been applied for this purpose so far. Actually, we presented an electrochemical sensor based on glassy carbon electrode improved by molecular imprinted polymer (MIP), palladium nanoparticles (Pd NPs), and multi-walled carbon nanotubes (MWCNT) (MIP/Pd/MWCNT nanocomposite). The prepared nanocomposite was characterized by SEM, TEM, EDX, XRD, and FT-IR before applying to the electrode. In the electrochemical process, several parameters were investigated including the electrochemical behavior of modifiers, the effect of scan rate, type, concentration, and pH values of supporting electrolyte. Finally, 0.1 M phosphate buffer at pH = 7.0 was selected as the appropriate supporting electrolyte and under optimal conditions, a linearity in the range of 0.01–400.0 nM was obtained. Quantification and detection limit were found to be 0.01 nM and 0.003 nM, respectively. The relative standard deviation of the proposed method for 10.0 nM and 200.0 nM agnuside solutions was obtained ± 1.32% and ± 0.65%, respectively. Low RSDs in preparation and determination procedures illustrated the repeatability and reproducibility of the proposed sensor. The prepared sensor exhibited excellent stability and selectivity, as well. The satisfactory results showed that the proposed sensor could be successfully applied to determine agnuside in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Pillarisetti, K.A. Myers, Identification and characterization of agnuside, a natural proangiogenic small molecule. Eur. J. Med. Chem. 160, 193–206 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M.Z. Salem, S.I. Behiry, M. EL-Hefny, Inhibition of Fusarium culmorum, Penicillium chrysogenum and Rhizoctonia solani by n-hexane extracts of three plant species as a wood-treated oil fungicide. J. Appl. Microbiol. 126(6), 1683–1699 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. R. Dobrucka, Facile synthesis of trimetallic nanoparticles Au/CuO/ZnO using Vitex agnus-castus extract and their activity in degradation of organic dyes. Int. J. Environ. Anal. Chem. 101(14), 2046–2057 (2019)

    Article  Google Scholar 

  4. R. Ramakrishna, M. Bhateria, R. Singh, S.K. Puttrevu, R.S. Bhatta, Plasma pharmacokinetics, bioavailability and tissue distribution of agnuside following peroral and intravenous administration in mice using liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 125, 154–164 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. E. Skrzypczak-Pietraszek, K. Piska, J. Pietraszek, Enhanced production of the pharmaceutically important polyphenolic compounds in Vitex agnus castus L. shoot cultures by precursor feeding strategy. Eng. Life Sci. 18(5), 287–297 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. N. Kamal, N.S. Mio Asni, I.N.A. Rozlan, M.A.H. Mohd Azmi, N.W. Mazlan, A. Mediani et al., Traditional medicinal uses, phytochemistry, biological properties, and health applications of Vitex sp. Plants 11(15), 1944 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A.K. Meena, U. Niranjan, M. Rao, M. Padhi, R. Babu, A review of the important chemical constituents and medicinal uses of Vitex genus. Asian J. Tradit. Med. 6(2), 54–60 (2011)

    CAS  Google Scholar 

  8. И Bыcoцкaя, B. Лeтягин, Pharmacological effects and molecular mechanisms of action of a herbal medicine based on Vitex agnus-castus. Reprod. Endocrinol. 40, 93–97 (2018)

    Google Scholar 

  9. F. El Kamari, A. Taroq, Y. El Atki, I. Aouam, B. Lyoussi, A. Abdellaoui, Chemical composition of essential oils from vitex agnus-castus L. growing in morocco and its in vitro antibacterial activity against clinical bacteria responsible for nosocomial infections. Asian J. Pharm. Clin. Res. 11(10), 365–368 (2018)

    Article  Google Scholar 

  10. E.W.C. Chan, S.K. Wong, H.T. Chan, Casticin from Vitex species: a short review on its anticancer and anti-inflammatory properties. J. Integr. Med. 16(3), 147–152 (2018)

    Article  PubMed  Google Scholar 

  11. F. Farshchian, O. Davarinejad, S. Brand, Drug-induced psychotic disorder after administration of Vitex agnus castus (chasteberry) medication to treat premenstrual syndrome: a case report. Arch. Clin. Psychiatry 46(3), 80–80 (2019)

    Article  Google Scholar 

  12. F.N. Moreno, E.H. Gilglioni, R.F. Garcia, N.C. Lucredi, S.M. Ferreira, N.A. Brito et al., Agnuside reduces visceral adipocyte size, improves insulin sensitivity and reverses hepatic steatosis in ovariectomized rats. J. Pharm. Pharmacol. 7, 133–147 (2019)

    Google Scholar 

  13. B. Dinda, Pharmacokinetics of Iridoids, in Pharmacology and Applications of Naturally Occurring Iridoids. ed. by B. Dinda (Springer, 2019), pp.255–269

    Chapter  Google Scholar 

  14. M. Afzali, A. Mostafavi, T. Shamspur, Designing an Au/reduced graphene oxide modified carbon paste electrode for the electrochemical quantification of agnuside. Sens. Actuators, B: Chem. 290, 188–194 (2019)

    Article  CAS  Google Scholar 

  15. V. Mirceski, R. Gulaboski, M. Lovric, I. Bogeski, R. Kappl, M. Hoth, Square-wave voltammetry: a review on the recent progress. Electroanalysis 25(11), 2411–2422 (2013)

    Article  CAS  Google Scholar 

  16. M.C. Brothers, M. DeBrosse, C.C. Grigsby, R.R. Naik, S.M. Hussain, J. Heikenfeld et al., Achievements and challenges for real-time sensing of analytes in sweat within wearable platforms. Acc. Chem. Res. 52(2), 297–306 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. R. Singh, N. Kumar, R. Mehra, H. Kumar, V.P. Singh, Progress and challenges in the detection of residual pesticides using nanotechnology based colorimetric techniques. Trends Environ. Anal. Chem. 26, e00086 (2020)

    Article  CAS  Google Scholar 

  18. Y. Ou, A.M. Buchanan, C.E. Witt, P. Hashemi, Frontiers in electrochemical sensors for neurotransmitter detection: towards measuring neurotransmitters as chemical diagnostics for brain disorders. Anal. Methods 11(21), 2738–2755 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  19. M. Sajid, N. Baig, Chemically modified electrodes for electrochemical detection of dopamine: challenges and opportunities. TrAC Trends Anal. Chem. (2019). https://doi.org/10.1016/j.trac.2019.05.042

    Article  Google Scholar 

  20. X. Ying, X. Zhu, A. Kang, X. Li, Molecular imprinted electrospun chromogenic membrane for l-tyrosine specific recognition and visualized detection. Talanta 204, 647–654 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. M. Afzali, A. Mostafavi, T. Shamspur, Developing a novel sensor based on ionic liquid molecularly imprinted polymer/gold nanoparticles/graphene oxide for the selective determination of an anti-cancer drug imiquimod. Biosens. Bioelectron. 143, 111620 (2019)

    Article  CAS  PubMed  Google Scholar 

  22. N.C. Maragou, N.S. Thomaidis, G.A. Theodoridis, E.N. Lampi, M.A. Koupparis, Determination of bisphenol A in canned food by microwave assisted extraction, molecularly imprinted polymer-solid phase extraction and liquid chromatography-mass spectrometry. J. Chromatogr. B 1137, 121938 (2020)

    Article  CAS  Google Scholar 

  23. E. Rahmati, Z. Rafiee, A biocompatible high surface area ZnO-based molecularly imprinted polymer for the determination of meloxicam in water media and plasma. New J. Chem. 43(22), 8492–8501 (2019)

    Article  CAS  Google Scholar 

  24. W. Zhang, C. Liu, K. Han, X. Wei, Y. Xu, X. Zou et al., A signal on-off ratiometric electrochemical sensor coupled with a molecular imprinted polymer for selective and stable determination of imidacloprid. Biosens. Bioelectron. 154, 112091 (2020)

    Article  CAS  PubMed  Google Scholar 

  25. S.A. Zaidi, Molecular imprinted polymers as drug delivery vehicles. Drug Delivery 23(7), 2262–2271 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. A. Sinha, S.M. Mugo, X. Lu, J. Chen, Molecular imprinted polymer-based biosensors for the detection of pharmaceutical contaminants in the environment, in Tools. ed. by S. Kaur Brar, K. Hegde, V. Laxman Pachapur (Elsevier, Techniques and Protocols for Monitoring Environmental Contaminants, 2019), pp.371–389

    Google Scholar 

  27. D.-L. Huang, R.-Z. Wang, Y.-G. Liu, G.-M. Zeng, C. Lai, P. Xu et al., Application of molecularly imprinted polymers in wastewater treatment: a review. Environ. Sci. Pollut. Res. 22(2), 963–977 (2015)

    Article  CAS  Google Scholar 

  28. Z. Zhang, J. Liu, Molecular imprinting with functional DNA. Small 15(26), 1805246 (2019)

    Article  Google Scholar 

  29. R. Wang, P. Wu, Y. Cui, M. Fizir, J. Shi, H. He, Selective recognition and enrichment of sterigmatocystin in wheat by thermo-responsive imprinted polymer based on magnetic halloysite nanotubes. J. Chromatogr. A 1619, 460952 (2020)

    Article  CAS  PubMed  Google Scholar 

  30. X. Bai, B. Zhang, M. Liu, X. Hu, G. Fang, S. Wang, Molecularly imprinted electrochemical sensor based on polypyrrole/dopamine@ graphene incorporated with surface molecularly imprinted polymers thin film for recognition of olaquindox. Bioelectrochemistry 132, 107398 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. M. Liu, B. Zhang, M. Zhang, X. Hu, W. Chen, G. Fang et al., A dual-recognition molecularly imprinted electrochemiluminescence sensor based on g-C3N4 nanosheets sensitized by electrodeposited rGO-COOH for sensitive and selective detection of tyramine. Sens. Actuators B: Chem. 311, 127901 (2020)

    Article  CAS  Google Scholar 

  32. X. Ma, X. Tu, F. Gao, Y. Xie, X. Huang, C. Fernandez et al., Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin. Sens. Actuators B: Chem. 309, 127815 (2020)

    Article  CAS  Google Scholar 

  33. Y.M. Kamil, S.H. Al-Rekabi, H.A. Mohamed, M.H.A. Bakar, S. Kanagesan, Y.W. Fen et al., Di-iron trioxide hydrate-multi-walled carbon nanotube nanocomposite for arsenite detection using surface plasmon resonance technique. IEEE Photon. J. 11(4), 1–9 (2019)

    Article  Google Scholar 

  34. N.A. Niaz, F. Hussain, R.M.A. Khalil, M. Imran, A. Shakoor, N. Khalid et al., Hybrid nanocomposites of multi-walled carbon nanotubes (MWCNTs) and CuO as electrode materials for energy storage devices. J. Electron. Mater. 49(2), 1096–1103 (2020)

    Article  CAS  Google Scholar 

  35. M.L. Yola, N. Atar, Simultaneous determination of β-agonists on hexagonal boron nitride nanosheets/multi-walled carbon nanotubes nanocomposite modified glassy carbon electrode. Mater. Sci. Eng.: C 96, 669–676 (2019)

    Article  CAS  Google Scholar 

  36. S.-H. Min, G.-Y. Lee, S.-H. Ahn, Direct printing of highly sensitive, stretchable, and durable strain sensor based on silver nanoparticles/multi-walled carbon nanotubes composites. Compos. Part B: Eng. 161, 395–401 (2019)

    Article  CAS  Google Scholar 

  37. Z. Xu, X. Jiang, S. Liu, M. Yang, Sensitive and selective molecularly imprinted electrochemical sensor based on multi-walled carbon nanotubes for doxycycline hyclate determination. Chin. Chem. Lett. 31(1), 185–188 (2020)

    Article  CAS  Google Scholar 

  38. V. Sanko, A. Şenocak, S.O. Tümay, Y. Orooji, E. Demirbas, A. Khataee, An electrochemical sensor for detection of trace-level endocrine disruptor bisphenol A using Mo2Ti2AlC3 MAX phase/MWCNT composite modified electrode. Environ. Res. 212, 113071 (2022)

    Article  CAS  PubMed  Google Scholar 

  39. W. Hao, Y. Ge, M. Qu, Y. Wen, H. Liang, M. Li et al., A simple rapid portable immunoassay of trace zearalenone in feed ingredients and agricultural food. J. Food Compos. Anal. 107, 104292 (2022)

    Article  CAS  Google Scholar 

  40. F. Zaeifi, F. Sedaghati, F. Samari, A new electrochemical sensor based on green synthesized CuO nanostructures modified carbon ionic liquid electrode for electrocatalytic oxidation and monitoring of l-cysteine. Microchem. J. 183, 107969 (2022)

    Article  CAS  Google Scholar 

  41. E. Dilonardo, M. Penza, M. Alvisi, R. Rossi, G. Cassano, C. Di Franco et al., Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles. Beilstein J. Nanotechnol. 8(1), 592–603 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Q. Nie, W. Zhang, L. Wang, Z. Guo, C. Li, J. Yao et al., Sensitivity enhanced, stability improved ethanol gas sensor based on multi-wall carbon nanotubes functionalized with Pt-Pd nanoparticles. Sens. Actuators B: Chem. 270, 140–148 (2018)

    Article  CAS  Google Scholar 

  43. Y. Ryou, J. Lee, Y. Kim, S. Hwang, H. Lee, C.H. Kim et al., Effect of reduction treatments (H2 vs. CO) on the NO adsorption ability and the physicochemical properties of Pd/SSZ-13 passive NOx adsorber for cold start application. Appl. Catal. A: Gen. 569, 28–34 (2019)

    Article  CAS  Google Scholar 

  44. M. Afzali, A. Mostafavi, R. Nekooie, Z. Jahromi, A novel voltammetric sensor based on palladium nanoparticles/carbon nanofibers/ionic liquid modified carbon paste electrode for sensitive determination of anti-cancer drug pemetrexed. J. Mol. Liq. 282, 456–465 (2019)

    Article  CAS  Google Scholar 

  45. Z. Zhu, H.-N. Luk, Y.-S. Liu, R.-J. Wu, M.-H. Chung, X.-J. Chang, Preparation of bimetallic Au-Pd/MWCNTs electrode for detection of dopamine. Minerals 12(9), 1145 (2022)

    Article  CAS  Google Scholar 

  46. H. Ryu, E. Park, R. Selvaraj, Y. Kim, Reusable Pd nanoparticle catalysts supported on KOH-activated waste coffee grounds for the catalytic reduction of 4-nitrophenol. (2023)

  47. M. Chawla, A. Kumari, P.F. Siril, Exceptional catalytic activities and sensing performance of palladium decorated anisotropic gold nanoparticles. ChemistrySelect 3(31), 9071–9083 (2018)

    Article  CAS  Google Scholar 

  48. K. Charoenkitamorn, S. Chaiyo, O. Chailapakul, W. Siangproh, Low-cost and disposable sensors for the simultaneous determination of coenzyme Q10 and α-lipoic acid using manganese (IV) oxide-modified screen-printed graphene electrodes. Anal. Chim. Acta 1004, 22–31 (2018)

    Article  CAS  PubMed  Google Scholar 

  49. J. Lang, W. Wang, Y. Zhou, D. Guo, R. Shi, N. Zhou, Electrochemical behavior and direct quantitative determination of paclitaxel. Front. Chem. (2022). https://doi.org/10.3389/fchem.2022.834154

    Article  PubMed  PubMed Central  Google Scholar 

  50. S. Shah, T. Dhanani, S. Kumar, Validated HPLC method for identification and quantification of p-hydroxy benzoic acid and agnuside in Vitex negundo and Vitex trifolia. J. Pharm. Anal. 3(6), 500–508 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  51. R.N. Goyal, V.K. Gupta, S. Chatterjee, A sensitive voltammetric sensor for determination of synthetic corticosteroid triamcinolone, abused for doping. Biosens. Bioelectron. 24(12), 3562–3568 (2009)

    Article  CAS  PubMed  Google Scholar 

  52. M. Huang, Y. Zhang, S. Xu, W. Xu, K. Chu, W. Xu et al., Identification and quantification of phenolic compounds in Vitex negundo L. var. cannabifolia (Siebold et Zucc.) Hand.-Mazz. using liquid chromatography combined with quadrupole time-of-flight and triple quadrupole mass spectrometers. J. Pharm. Biomed. Anal. 108, 11–20 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been supported by Institute of Science and High Technology and Environmental Sciences, Graduated University of Advanced Technology (Kerman-Iran) under grant number of 7/2706

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryoush Afzali.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzali, D., Afzali, M. Highly sensitive and selective response of agnuside using a chemical sensor based on molecularly imprinted polymer/Pd/MWCNT nanocomposite at the surface of glassy carbon electrode. J IRAN CHEM SOC 20, 2727–2737 (2023). https://doi.org/10.1007/s13738-023-02869-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02869-9

Keywords

Navigation