Skip to main content
Log in

Electrochemical Sensor Based on Nitrogen Doped Porous Reduced Graphene Oxide to Detection of Ciprofloxacin in Pharmaceutical Samples

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Fluoroquinolone ciprofloxacin (Cip) is an antibiotic used to treat some bacterial infections such as bone, joint, respiratory tract, skin, typhoid fever and urinary tract infections. Cip can also cause severe allergic reactions. So, clinical and pharmaceutical analysis of Cip is very important. Herein nitrogen doped porous reduced graphene oxide (N-prGO) as active material in electrochemical sensors was synthesized in ammonia media. The results indicated that presence of heteroatoms in the N-prGO increases the active sites and enhances the electrical conductivity. A new electrochemical sensor was developed based on the use of N‑prGO on carbon paste electrode (CPE) for the detection of Cip. The introduction of N-prGO porous support can provide high surface area, facilitate the diffusion and mass transport of reactants, and makes the sensor more sensitive and accurate for the detection of Cip. The N-prGO-based CPE presented a linear response for Cip concentration range of 0.1 to 10 µM, sensitivity of 820 µA mM–1and detection limit of 39 nM by differential pulse voltammetry. The developed method was successfully applied for detection of Cip in human serum and pharmaceutical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Feier, B., Blidar, A., Pusta, A., and Cecilia Cristea, P.C., Electrochemical sensor based on molecularly imprinted polymer for the detection of cephalexin, Biosensors, 2019, vol. 9, p. 31.

    Article  CAS  PubMed Central  Google Scholar 

  2. Genamo, E.S., Gebeyehu Bayisa, H., and Ditamo, R., Assessment of antibiotics use for hospitalized children in butajira general hospital, southern part of Ethiopia, Int. J. Pediatr., 2019, vol. 7, p. 8845.

    Google Scholar 

  3. Choudhury, D.K. and Bezbaruah, B.K., Antibiotic prescriptions pattern in paediatric in-patient department gauhati medical college and hospital, Guwahati, J. Appl. Pharm. Sci., 2013, vol. 3, p. 144.

    Google Scholar 

  4. Kim, S. and Aga, D.S., Potential ecological and human health impacts of antibiotics and antibiotic resistant bacteria from wastewater treatment plants, J. Toxicol. Environ. Health B, 2007, vol. 10, p. 559.

    Article  CAS  Google Scholar 

  5. Grenni, P., Ancona, V., and Barra Caracciolo, A., Ecological effects of antibiotics on natural ecosystems, Microchem. J., 2018, vol. 136, p. 25.

    Article  CAS  Google Scholar 

  6. Manyi-Loh, Ch., Mamphweli, S., Meyer, E., and Okoh, A., Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications, Molecules, 2018, vol. 23, p. 795.

    Article  PubMed Central  CAS  Google Scholar 

  7. Fedorowicz, J. and Sączewski, J., Modifications of quinolones and fluoroquinolones: hybrid compounds and dual-action molecules, Monatsh. Chem., 2018, vol. 149, p. 1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qassim, A.W., Spectrophotometric determination of ciprofloxacin hydrochloride in pharmaceutical formulation ciproxin, Int. J. Adv. Sci. Tech. Res., 2015, vol. 3, p. 135.

    Google Scholar 

  9. Kumar, M., Jaiswal, Sh., Kaur Sodhi, K., Dileep Kumar Singh, P.Sh., and Shukla, P., Antibiotics bioremediation: perspectives on its ecotoxicity and resistance, Enviroment. Int., 2019, vol. 124, p. 448.

    Article  CAS  Google Scholar 

  10. Puttaswamy Deepak, M. and Puttagiddappa Mamatha, G., Voltammetric studies of ciprofloxacin hydrochloride at poly(L-tyrosine)/SnO2 nanoparticles modified carbon paste electrode, Anal. Bioanal. Electrochem., 2015, vol. 7, p. 523.

    Google Scholar 

  11. Bantarapiwat, K., Rojsanga, P., Ruangwises, N., and Buranaphalin, S., Simultaneous determination of ciprofloxacin hydrochloride and dexamethasone in ophthalmic solution by high performance liquid chromatography and derivative spectrophotometry, J. Pharm. Sci., 2016, vol. 43, p. 183.

    CAS  Google Scholar 

  12. Emami, J. and Rezazadeh, M., A simple and sensitive high-performance liquid chromatography method for determination of ciprofloxacin in bioavailability studies of conventional and gastroretentive prolonged-release formulations, Adv. Biomed. Res., 2016, vol. 5, p. 163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Solangi, A.R., Memon, S.Q., Mallah, A., Memon, N., Khuhawar, M.Y., and Bhanger, M.I., Development and implication of a capillary electrophoresis methodology for ciprofloxacin, paracetamol and diclofenac sodium in pharmaceutical formulations and simultaneously in human urine samples, Pak. J. Pharm. Sci., 2011, vol. 24, p. 539.

    CAS  PubMed  Google Scholar 

  14. Zhang, H.T., Jiang, J.Q., Wang, Z.l., Chang, X.Y., Liu, X.Y., Wang, S.H., Zhao, K., and Chen, J.Sh., Development of an indirect competitive ELISA for simultaneous detection of enrofloxacin and ciprofloxacin, J. Zhejiang Univ. Sci. B, 2011, vol. 12, p. 884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baeza, A.N., Urraca, J.L., Chamorro, R., Orellana, G., Castellari, M., and Moreno-Bondi, M.C., Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry, J. Chromatogr. A, 2016, vol. 1474, p. 121.

    Article  CAS  PubMed  Google Scholar 

  16. Li, W., Shen, H., Hong, Y., Zhang, Y., Yuan, F., and Zhang, F., Simultaneous determination of 22 cephalosporins drug residues in porkmuscle using liquid chromatography–tandem mass spectrometry, J. Chromatogr. B, 2016, vol. 1022, p. 298.

    Article  CAS  Google Scholar 

  17. Lata, K., Sharma, R., Naik, L., Rajput, Y.S., and Mann, B., Synthesis and application of cephalexin imprinted polymer for solid phase extraction in milk, Food Chem., 2015, vol. 184, p. 176.

    Article  CAS  PubMed  Google Scholar 

  18. Ali Ahmed, S.M., Elbashir, A.A., and Aboul-Enein, H.Y., New spectrophotometric method for determination of cephalosporins in pharmaceutical formulations, Arab. J. Chem., 2015, vol. 8, p. 233.

    Article  CAS  Google Scholar 

  19. Buglak, A.A., Shanin, I.A., Eremin, S.A., Lei, H.T., Li, X., Zherdev, A.V., and Dzantiev, B.B., Ciprofloxacin and clinafloxacin antibodies for an immunoassay of quinolones: quantitative structure–activity analysis of cross-reactivities, Int. J. Mol. Sci., 2019, vol. 20, p. 265.

    Article  PubMed Central  CAS  Google Scholar 

  20. Hamnca, S., Phelane, L., Iwuoha, E., and Baker, P., Electrochemical determination of neomycin and norfloxacin at a novel polymer nanocomposite electrode in aqueous solution, Anal. Lett., 2017, vol. 50, p. 1887.

    Article  CAS  Google Scholar 

  21. Feier, B., Gui, A., Cristea, C., and Săndulescu, R., Electrochemical determination of cephalosporins using a bare boron-doped diamond electrode, Anal. Chim. Acta, 2017, vol. 976, p. 25.

    Article  CAS  PubMed  Google Scholar 

  22. Yi, H. and Li, Ch., Voltammetric determination of ciprofloxacin based on the enhancement effect of cetyltrimethylammonium bromide (CTAB) at carbon paste electrode, Russ. J. Electrochem., 2007, vol. 43, p. 1377.

    Article  CAS  Google Scholar 

  23. Zhang, Sh. and Wei, Sh., Electrochemical determination of ciprofloxacin based on the enhancement effect of sodium dodecyl benzene sulfonate, Bull. Korean. Chem. Soc., 2007, vol. 28, p. 543.

    Article  CAS  Google Scholar 

  24. Yuan, Y., Zhang, F., Wang, H., Gao, L., and Wang, Z., A sensor based on Au nanoparticles/carbon nitride/graphene composites for the detection of chloramphenicol and ciprofloxacin, ECS J. Solid State Sci. Technol., 2018, vol. 7, p. M201.

    Article  CAS  Google Scholar 

  25. Cinková, K., Andrejčáková, D., and Švorc, L., Electrochemical method for point-of-care determination of ciprofoxacin using boron-doped diamond electrode, Acta Chim. Slov., 2016, vol. 9, p. 146.

    Article  CAS  Google Scholar 

  26. Uslu, B., Bozal, B., and Emin Kuscu, M., Anodic voltammetry of ciprofloxacin and its analytical applications, Open Chem. Biomed. Methods J., 2010, vol. 3, p. 108.

    Article  CAS  Google Scholar 

  27. Shan, J., Liu, Y., Li, R., Wu, C., Zhu, L., and Zhang, J., Indirect electrochemical determination of ciprofloxacin by anodic stripping voltammetry of Cd(II) on graphene-modified electrode, J. Electroanal. Chem., 2015, vol. 738, p. 123.

    Article  CAS  Google Scholar 

  28. Ensafi, A.A., Allafchian, A.R., and Mohammadzadeh, R., Characterization of MgFe2O4 nanoparticles as a novel electrochemical sensor: application for the voltammetric determination of ciprofloxacin, Anal. Sci., 2012, vol. 28, p. 705.

    Article  CAS  PubMed  Google Scholar 

  29. Mahon, P.J., Lai, G., and Yu, A., Reduced graphene oxide nanocomposite modified electrodes for sensitive detection of ciprofloxacin, Electroanalysis, 2018, vol. 30, p. 2185.

    Article  CAS  Google Scholar 

  30. Xie, A.J., Chen, Y., Luo, S.P., Tao, Y.W., Jin, Y.S., and Li, W.W., Electrochemical detection of ciprofloxacin based on graphene modified glassy carbon electrode, J. Mater. Technol. Adv. Perform. Mater., 2015, vol. 30, p. 362.

    CAS  Google Scholar 

  31. Chen, Zh., Yan, H., Liu, T., and Niu, S., Nanosheets of MoS2 and reduced graphene oxide as hybrid fillers improved the mechanical and tribological properties of bismaleimide composites, Compos. Sci. Technol., 2016, vol. 125, p. 47.

    Article  CAS  Google Scholar 

  32. Ambrosi, A., Chua, C.K., Bonanni, A., and Pumera, M., Electrochemistry of graphene and related materials, Chem. Rev., 2014, vol. 114, p. 7150.

    Article  CAS  PubMed  Google Scholar 

  33. Chabot, V., Higgins, D., Yu, A., Xiao, X., Chen, Z., and Zhang, J., A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment, Energy Environ. Sci., 2014, vol. 7, p. 1564.

    Article  CAS  Google Scholar 

  34. Nolan, H., Mendoza-Sanchez, B., Ashok Kumar, N., Mc Evoy, N., O’Brien, S., Nicolosi, V., and Duesberg, G.S., Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 2280.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, H., Maiyalagan, T., and Wang, X., Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications, ACS Catal., 2012, vol. 2, p. 781.

    Article  CAS  Google Scholar 

  36. Qu, L., Liu, Y., Baek, J.B., and Dai, L., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano, 2010, vol. 4, p. 1321.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Y., Shao, Y., Matson, D.W., Li, J., and Lin, Y., Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano, 2010, vol. 4, p. 1790.

    Article  CAS  PubMed  Google Scholar 

  38. Chekin, F., Vasilescu, A., Jijie, R., Singh, S.K., Kurungot, S., Iancu, M., Badea, G., Boukherroub, R., and Szunerits, S., Sensitive electrochemical detection of cardiac troponin I in serum an saliva by nitrogen-doped porous reduced graphene oxide electrode, Sens. Actuators B, 2018, vol. 262, p. 180.

    Article  CAS  Google Scholar 

  39. Chekin, F., Myshin, V., Ye, R., Melinte, S., Singh, S.K., Kurungot, S., Boukherroub, R., and Szunerits, S., Graphene-modified electrodes for sensing doxorubicin hydrochloride in human plasma, Anal. Bioanal. Chem., 2019, vol. 411, p. 1509.

    Article  CAS  PubMed  Google Scholar 

  40. Nikkhah, Sh., Tahermansouri, H., and Chekin, F., Synthesis, characterization, and electrochemical properties of the modified graphene oxide with 4,4'-methylenedianiline, Mater. Lett., 2018, vol. 211, p. 323.

    Article  CAS  Google Scholar 

  41. Zareyy, B., Chekin, F., and Fathi, Sh., NiO/porous reduced graphene oxide as active hybrid electrocatalyst for oxygen evolution reaction, Russ. J. Electrochem., 2019, vol. 55, p. 333.

    Article  CAS  Google Scholar 

  42. Hazhir, N., Chekin, F., Raoof, J.B., and Fathi, Sh., Porous reduced graphene oxide/chitosan-based nanocarrier for delivery system of doxorubicin, RSC Adv., 2019, vol. 9, p. 30729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Amirighadi, S., Raoof, J.B., Chekin, F., and Ojani, R., A sensitive voltammetric detection of pramipexole based on 1,1,3,3-tetramethyldisilazane carbon nano tube modified electrode, Mater. Sci. Eng. C, 2017, vol. 75, p. 784.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Chekin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyhane Rahimpour, Sabeti, B. & Chekin, F. Electrochemical Sensor Based on Nitrogen Doped Porous Reduced Graphene Oxide to Detection of Ciprofloxacin in Pharmaceutical Samples. Russ J Electrochem 57, 654–662 (2021). https://doi.org/10.1134/S1023193520120186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520120186

Keywords:

Navigation