Skip to main content
Log in

Effect of Dopants on the Lithium Metazirconate Conductivity

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Samples from the Li2 – 2xMxZrO3 (M = Ca, Zn), Li2 –xZr1 –xNbxO3, and Li2 +xZr1– xYxO3 systems were synthesized by conventional solid-state reaction. Estimated domains of Li2ZrO3-based solid solutions were established for all above-mentioned systems. The transport properties of the samples (temperature and composition dependences of their conductivity, and the conductivity activation energy) were studied by electrochemical impedance spectroscopy in the temperature range from 300 to 600°С. The most probable lithium-ion migration mechanisms depending on the Li2ZrO3 crystal structure were discussed. According to the obtained results, the synthesized materials are typical solid electrolytes with extrinsic disorder and quite low ionic conductivity (σ ∼ 10–2 –10–5 S cm–1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. Here and below the ionic radii are taken from work [36].

REFERENCES

  1. Cao, C., Li, Z-B., Wang, X-L., Zhao, X-B., and Han, W.-Q., Recent advances in inorganic solid electrolytes for lithium batteries, Frontiers Energy Research, 2014, vol. 2, p. 25.

    Article  Google Scholar 

  2. Bachman, J.Ch, Muy, S., Girmaud, A., Chang, H.-H., Pour, N., Lux, S.F., Paschos, O., Maglia, F., Lupart, S., Lamp, P., Giordano, L., and Shao-Horn, Y., Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction, Chem. Rev., 2016, vol. 116, no. 1, p. 140.

    Article  CAS  Google Scholar 

  3. Zheng, F., Kotobuki, M., Song, S., Lai, M.O., and Lu, L, Review on solid electrolytes for all-solid-state lithium-ion batteries, J. Power Sources, 2018, vol. 389, p. 198.

    Article  CAS  Google Scholar 

  4. Robertson, A.D., West, A.R., and Ritchie, A.G., Review of crystalline lithium-ion conductors suitable for high temperature battery applications, Solid State Ionics, 1997, vol. 104, nos. 1–2, p. 1.

    Article  CAS  Google Scholar 

  5. Hellstrom, E.E. and Van Gool, W., Constraints for the selection of lithium solid electrolytes, Rev. Chem. Miner., 1980, vol. 17, p.263.

    CAS  Google Scholar 

  6. Dong, Y., Zhao, Y., Duan, H., and Huang, J., Electrochemical performance and lithium-ion insertion/extraction mechanism studies on the novel Li2ZrO3 anode materials, Electrochim. Acta, 2015, vol. 161, p. 219.

    Article  CAS  Google Scholar 

  7. Miao, X., Ni, H., Zhang, H., Wang, C., Fang, J., and Yang, G., Li2ZrO3  coated  0.4Li2MnO3 · 0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery, J. Power Sources, 2014, vol. 265, p. 147.

    Article  Google Scholar 

  8. Yi, H., Wang, X., Ju, B., Shu, H., Wen, W., Yu, R., Wang, D., and Yang, X., Effective enhancement of electrochemical performance for spherical spinel LiMn2O4 via Li-ion conductive Li2ZrO3 coating, Electrochim. Acta, 2014, vol. 134, p. 143.

    Article  CAS  Google Scholar 

  9. Huang, S., Wilson, B., Wang, Bo., Fang, Y., Buffington, K., Stein, A., and Truhlar, G., Y-doped Li8ZrO6: A Li-ion Battery Cathode Material with High Capacity, J. Amer. Chem. Soc., 2015, vol. 137, no. 34, p. 10992.

    Article  CAS  Google Scholar 

  10. Huang, S., Wilson, B., Smyrl, W.H., Truhlar, D.G., and Stein, A., Transition-Metal-Doped M-LiZrO (M = Mn, Fe, Co, Ni, Cu, Ce) as High-Specific-Capacity Li-Ion Battery Cathode Materials: Synthesis, Electrochemistry, and Quantum Mechanical Characterization, Chem. Mater., 2016, vol. 28, no. 3, p. 746.

    Article  CAS  Google Scholar 

  11. Hellstrom, E.E. and Van Gool, W., Lithium-ion conduction in Li2ZrO3, Li4ZrO4 and LiScO2, Solid State Ionics, 1981, vol. 2, no. 1, p. 59.

    Article  CAS  Google Scholar 

  12. Murthy, A.S.R., Gnanasekaran, T., and Jayaraman V., Preparation and characterization of some lithium-ion conductors, Solid State Ionics, 2017, vol. 303, p. 138.

    Article  Google Scholar 

  13. Martel, L.C. and Roth, R.S., Phase-equilibria and crystal-chemistry in ternary oxide system containing Li2O–MO2–Ta2O5 (M = Ti, Sn, Zr, Th), Amer. Ceram. Soc. Bull., 1981, vol. 60, no. 3, p. 376.

    Google Scholar 

  14. Vyers, G.P. and Cordfunke, E.H.P., J. Nucl. Mater., Phase relations in the system Li2O-ZrO2, 1989, vol. 168, nos. 1–2, p. 24.

  15. Enriquez, L.J., Quintana, P., and West, A.R., Compound Formation in the System Li2O-ZrO2, Trans. British Ceram. Soc., 1982, vol. 81, p. 17.

    CAS  Google Scholar 

  16. Delmas, C., Maazaz, A., Guillen F., Fouassier, C., Reau, J.M., and Hagenmuller, P., Des conducteurs ioniques pseudo-bidimensionnels: Li8MO6 (M = Zr, Sn), Li7LO6 (L = Nb, Ta) et Li6In2O6, Mat. Res. Bull., 1979, vol. 14, no. 5, p. 619.

    Article  CAS  Google Scholar 

  17. Liao, Y., Singh, P., Park, K.S., Li, W., and Goodenough, J.B., Li6Zr2O7 interstitial lithium-ion solid electrolyte, Electrochim. Acta, 2013, vol. 102, p. 446.

    Article  CAS  Google Scholar 

  18. Rao, R.P., Reddy, M.V., Adams, S., and Chowdary, B.V.R., Preparation and mobile ion transport studies of Ta and Nb doped Li6Zr2O7 Li-fast ion conductors, Mat. Sci. Eng. B, 2012, vol. 177, no. 5, p. 100.

    Article  CAS  Google Scholar 

  19. Pantyukhina, M.I., Shchelkanova, M.S., and Plaksin, S.V., Ionic conduction of Li8 – 2xMgxZrO6 solid solutions, Russ. J. Electrochem., 2010, vol. 46, no. 7, p. 780.

    Article  CAS  Google Scholar 

  20. Pantyukhina, M.I., Shchelkanova, M.S., and Plaksin, S.V., Ionic conductivity of Li8 – 2xSrxZrO6, Inorg. Materials, 2012, vol. 48, no. 4, p. 382.

    Article  CAS  Google Scholar 

  21. Pantyukhina, M.I., Shchelkanova, M.S., and Plaksin, S.V., Synthesis and electrochemical properties of Li8 –xZr1 –xNbxO6 solid solutions, Phys. Solid State, 2013, vol. 55, no. 4, p. 707.

    Article  CAS  Google Scholar 

  22. Andreev, O.L., Pantyukhina, M.I., Antonov, B.D., and Batalov, N.N., Synthesis and Electrical Properties of Lithium Metazirconate, Russ. J. Electrochem., 2000, vol. 36, p. 1335.

    Article  CAS  Google Scholar 

  23. Baklanova, Y.V., Zhuravlev, N.A., Maximova, L.G., Denisova, T.A., Leonidova, O.N., Raskovalov, A.A., and Tarakina, N.V., Synthesis and physicochemical properties of Li2MxZr1 –xO3– δ (M = Nb, Ti; x = 0.05, 0.1) solid solutions, Bull. Russ. Acad. Sci.: Physics, 2014, vol. 78, no. 4, p. 320.

    Article  CAS  Google Scholar 

  24. Kalashnova, A.V., Plaksin, S.V., Vovkotrub, E.G., and Shekhtman, G.S., Electric Conductivity of Lithium Metazirconate, Russ. J. Electrochem., 2018, vol. 54, no. 9, p. 709.

    Article  CAS  Google Scholar 

  25. Pantyukhina, M.I., Kalashnova, A.V., and Plaksin, S.V., Butlerov Communs., 2014, vol. 40, no. 11, p. 132. https://doi.org/jbc-02/14-40-11-132

  26. Quintana, P., Leal, J., Howie, R.A., and West, A.R., Li2ZrO3: A new polymorph with the α-LiFeO2 structure, Mat. Res. Bull., 1989, p. 1385.

  27. Hodeau, J.L., Marezio, M., Santoro, A., and Roth, R.S., Neutron Profile Refinement of the Structures of Li2SnO3 and Li2ZrO3, J. Solid State Chem, 1982, vol. 45, no. 2, p. 170.

    Article  CAS  Google Scholar 

  28. Dunstan, M.T., Schlogelhofer, H.L., Griffin, J.M., Dyer, M.S., Gaultois, M.W., Lau, S.Y., Scott, S.A., and Grey, C.P., Ion Dynamics and CO Absorption Properties Nb, Ta and Y-doped Li2ZrO3 Studied by Solid-State NMR, Thermogravimetry and First-Principle Calculations, J. Phys. Chem. C, 2017, vol. 121, no. 40, p. 21877.

    Article  CAS  Google Scholar 

  29. Villafuerte-Castrejon, M.E., Kuhilger, C., Ovando, R., Smith, R.I., and West, A.R., New Perovskite Phases in the Systems Li2O–(Nb2O5, Ta2O5)–ZrO2, J. Mater. Chem., 1991, vol. 1, no. 5, p. 747.

    Article  CAS  Google Scholar 

  30. Zou, Y. and Petric, A., Preparation and Properties of Yttrium-Doped Lithium Zirconate, J. Electrochem. Soc., 1993, vol. 140, no. 5, p. 1388.

    Article  CAS  Google Scholar 

  31. Mather, G.C., Dussarat, C., Etourneau, J., and West, A.R., A review of cation-ordered rock salt superstructure oxides, J. Mater.Chem., 2000, vol. 10, no. 10, p. 2219.

    Article  CAS  Google Scholar 

  32. Sherstobitova, E.A., Gubkin, A.F., Bobrikov, I.A., Kalashnova, A.M., and Pantyukhina, M.I., Bottle-necked ionic transport in Li2ZrO3: High temperature neutron diffraction and impedance spectroscopy, Electrochim. Acta, 2016, vol. 209, p. 574.

    Article  CAS  Google Scholar 

  33. Anurova, N.A., Blatov, V.A., Ilyushin, G.D., Blatova, O.A., Ivanov-Schits, A.K., and Dem’yanets, L.N., Migration maps of Li+ cations in oxygen-containing compounds, Solid State Ionics, 2008, vol. 179, no. 39, p. 2248.

    Article  CAS  Google Scholar 

  34. Blatov, V.A., Ilyushin, G.D., Blatova, O.A., Anurova, N.A., Ivanov-Schits, A.K., and Dem’yanets, L.N., Analysis of migration paths in fast-ion conductors with Voronoi-Dirichlet partition, Acta Cryst. B, 2006, vol. 62, no. 6, p. 1010.

    Article  CAS  Google Scholar 

  35. Fedotov, S.S., Kabanov, A.A., Kabanova, N.A., Blatov, A.V., Zhugayevych, A., Abakumov, A.M., Khasanova, N.R., and Antipov, E.V., Crystal Structure and Li-Ion Transport in Li2CoPO4F High-Voltage Cathode Material for Li-Ion Batteries, J. Phys. Chem. C, 2017, vol. 121, no. 6, p. 3194.

    Article  CAS  Google Scholar 

  36. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A, 1976, vol. 32, no. 5, p. 751.

    Article  Google Scholar 

  37. Baklanova, Ya.V., Arapova, I.Yu., Buzlukov, A.L., Gerashenko, A.P., Verkhovskii, S.V., Mikhalev, K.N., Denisova, T.A., Shein, I.R., and Maksimova, L.G., Lokalization of vacancies and mobility of lithium ions in Li2ZrO3 as obtained by 6,7Li NMR, J. Solid State Chem., 2013, vol. 208, p. 43.

    Article  CAS  Google Scholar 

  38. Pantyukhina, M.I., Andreev, O.L., Antonov, B.D., and Batalov, N.N., Synthesis and electrical Properties of Lithium Zirconates, Russ. J. Inorg. Chem., 2002, vol. 47, no. 11, p. 1778.

    Google Scholar 

Download references

ACKNOWLEGMENTS

This work is performed partly with the use of equipment from the common use center “The Composition of the Matter” of the Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences.

Funding

The study is performed in the frames of budgetary plan of the Institute of the High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences (project no. АААА-А19-119020190042-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Kalashnova or G. Sh. Shekhtman.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalashnova, A.V., Plaksin, S.V. & Shekhtman, G.S. Effect of Dopants on the Lithium Metazirconate Conductivity. Russ J Electrochem 56, 467–476 (2020). https://doi.org/10.1134/S1023193520060075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520060075

Keywords:

Navigation