Skip to main content
Log in

A Carbon Paste Electrode Modified by Graphene Oxide/Fe3O4@SiO2/Ionic Liquid Nanocomposite for Voltammetric Determination of Acetaminophen in the Presence of Tyrosine

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Herein, we introduce a novel modification process for carbon paste electrode by magnetic core–shell nanocomposite of graphene oxide/Fe3O4@SiO2 and n-hexyl-3-methylimidazolium hexafluoro phosphate as ionic liquid. Electrochemical features of this modified carbon paste electrode and its performance evaluation in simultaneous detection of acetaminophen and tyrosine via voltammetric oxidation was investigated. Moreover, diagnostic techniques including cyclic voltammetry, square wave voltammetry and chronoamperometry were applied in order to study the electrochemical oxidation behavior of this sensor toward acetaminophen. According to square wave voltammetry results, linear dynamic range between 1.0 × 10–6–1.0 × 10–3 M was observed for acetaminophen. The function of modified electrode in real samples containing acetaminophen and tyrosine was satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Moghadam, Z., Ghoreishi, S.M., Behpour, M., and Motaghedifard, M., A highly sensitive nanostructure-based surface covalently modification of gold for electrochemical sensing of epinephrine in presence of uric acid and acetaminophen, J. Electrochem. Soc., 2013, vol. 160, p. H126.

    Article  CAS  Google Scholar 

  2. Cernat, A., Tertis, M., Sandulescu, R., Bedioui, F., Cristea, A., and Cristea, C., Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: a review, Anal. Chim. Acta, 2015, vol. 886, p. 16.

    Article  CAS  PubMed  Google Scholar 

  3. Sharifian, S. and Nezamzadeh-Ejhieh, A., Modification of carbon paste electrode with Fe(III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid, Mater. Sci. Eng. C, 2016, vol. 58, p. 510.

    Article  CAS  Google Scholar 

  4. Karimi-Maleh, H., Moazampour, M., Ahmar, H., Beitollahi, H., and Ensafi, A.A., A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan, Measurement, 2014, vol. 51, p. 91.

    Article  Google Scholar 

  5. Shahrokhian, S. and Asadian, E., Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode, Electrochim. Acta, 2010, vol. 55, p. 666.

    Article  CAS  Google Scholar 

  6. Chiavazza, E., Berto, S., Giacomino, A., Malandrino, M., Barolo, C., Prenesti, E., Vione, D., and Abollino, O., Electrocatalysis in the oxidation of acetaminophen with an electrochemically activated glassy carbon electrode, Electrochim. Acta, 2016, vol. 192, p. 139.

    Article  CAS  Google Scholar 

  7. Beitollahi, H. and Nekooei, S., Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine, Electroanalysis, 2016, vol. 28, p. 645.

    Article  CAS  Google Scholar 

  8. Bhakta, A.K., Mascarenhas, R.J., D’Souza, O.J., Satpati, A.K., Detriche, S., Mekhalif, Z., and Dalhalle, J., Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode as an electrochemical sensor for the simultaneous determination of uric acid in the presence of ascorbic acid, dopamine and L-tyrosine, Mater. Sci. Eng. C, 2015, vol. 57, p. 328.

    Article  CAS  Google Scholar 

  9. Brillians-Revin, S. and Abraham-John, S., Selective determination of L-tyrosine in the presence of ascorbic and uric acids at physiological pH using the electropolymerized film of 3-amino-5-mercapto-1,2,4-triazole, Sens. Actuat. B-Chem., 2012, vol. 161, p. 1059.

    Article  CAS  Google Scholar 

  10. Mahbubur-Rahman, M., Siraj-Lopa, N., Kim, K., and Lee, J., Selective detection of L-tyrosine in the presence of ascorbic acid, dopamine, and uric acid at poly(thionine)-modified glassy carbon electrode, J. Electroanal. Chem., 2015, vol. 754, p. 87.

    Article  CAS  Google Scholar 

  11. Taei, M. and Ramazani, G., Simultaneous determination of norepinephrine, acetaminophen and tyrosine by differential pulse voltammetry using Au-nanoparticles/poly(2-amino-2-hydroxymethyl-propane-1,3-diol) film modified glassy carbon electrode, Colloids Surf. B, 2014, vol. 123, p. 23.

    Article  CAS  Google Scholar 

  12. Tahernejad-Javazmi, F., Shabani-Nooshabadi, M., and Karimi-Maleh, H., Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte, Talanta, 2018, vol. 176, p. 208.

    Article  CAS  PubMed  Google Scholar 

  13. Meyer, J.S., Welch, K.M.A., and Deshmuckh, V.D., Neurotransmitter precursor amino acids in the treatment of multi-infarct dementia and Alzheimer’s disease, J. Am. Geriatr. Soc., 1977, vol. 25, p. 289.

    Article  CAS  PubMed  Google Scholar 

  14. Kemmegne-Mbouguen, J.C., Toma, H.E., Araki, K., Constantino, V.R., Ngameni, E., and Angnes, L., Simultaneous determination of acetaminophen and tyrosine using a glassy carbon electrode modified with a tetraruthenated cobalt(II) porphyrin intercalated into a smectite clay, Microchim. Acta, 2016, vol. 183, p. 3243.

    Article  CAS  Google Scholar 

  15. Sirajuddin, A.R., Khaskheli, A., Shah, M.I., Bhanger, A., and Mahesar, S.N., Simpler spectrophotometric assay of paracetamol in tablets and urine samples, Spectrochem. Acta A, 2007, vol. 68, p. 747.

    Article  CAS  Google Scholar 

  16. Gioia, M.G., Andreatta, P., Boschetti, S., and Gatti, R., Development and validation of a liquid chromatographic method for the determination of ascorbic acid, dehydroascorbic acid and acetaminophen in pharmaceuticals, J. Pharm. Biomed. Anal., 2008, vol. 48, p. 331.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, F., Wu, K.Z., Qing, Y., and Ci, Y.X., Spectrofluorimetric determination of the substrates based on the fluorescence formation with the peroxidase-like conjugates of hemie with proteins, Anal. Lett., 1992, vol. 25, p. 1469.

    Article  CAS  Google Scholar 

  18. Huang, Y., Jiang, X., Wang, W., Duan, J., and Chen, G., Separation and determination of L-tyrosine and its metabolites by capillary zone electrophoresis with a wall-jet amperometric detection, Talanta, 2006, vol. 70, p. 1157.

    Article  CAS  PubMed  Google Scholar 

  19. Li, X. and Xu, G., Simultaneous determination of ranitidine and metronidazole in pharmaceutical formulations at poly(chromotrope 2B) modified activated glassy carbon electrodes, J. Food. Drug Anal., 2014, vol. 22, p. 345.

    Article  CAS  PubMed  Google Scholar 

  20. Beitollahi, H., Ghofrani Ivari, S., and Torkzadeh-Mahani, M., Application of antibody nanogold-ionic liquid-carbon paste electrode for sensitive electrochemical immunoassay of thyroid-stimulating hormone, Biosens. Bioelectron., 2018, vol. 110, p. 97.

    Article  CAS  PubMed  Google Scholar 

  21. Fouladgar, M., Application of ZnO nanoparticle/ion liquid modified carbon paste electrode for determination of isoproterenol in pharmaceutical and biological samples, J. Electrochem. Soc., 2016, vol. 163, p. B38.

    Article  CAS  Google Scholar 

  22. Beitollahi, H. and Sheikhshoaie, I., Electrochemical behavior of carbon nanotube/Mn(III) salen doped carbon paste electrode and its application for sensitive determination of N-acetylcysteine in the presence of folic acid, Int. J. Electrochem. Sci., 2012, vol. 7, p. 7684.

    CAS  Google Scholar 

  23. Ganjali, M.R., Khoshsafar, H., Shirzadmehi, A., Javanbakht, M., and Faridbod, F., Improvement of carbon paste ion selective electrode response by using room temperature ionic liquids (RTILs) and multi-walled carbon nanotubes (MWCNTs), Int. J. Electrochem. Sci., 2009, vol. 4, p. 435.

    CAS  Google Scholar 

  24. Beitollahi, H., Nekooei, S., and Torkzadeh-Mahani, M., Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer modified ionic liquid carbon paste electrode, Talanta, 2018, vol. 188, p. 701.

    Article  CAS  PubMed  Google Scholar 

  25. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3, 4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848.

    Article  CAS  PubMed  Google Scholar 

  26. Lu, X.C., Song, L., Ding, T.T., Lin, Y.L., and Xu, C.X., CuS–MWCNT based electrochemical sensor for sensitive detection of bisphenol A, Russ. J. Electrochem., 2017, vol. 53, p. 366.

    Article  CAS  Google Scholar 

  27. Mazloum-Ardakani, M., Beitollahi, H., Taleat, Z., Naeimi, H., and Taghavinia, N., Selective voltammetric determination of D-penicillamine in the presence of tryptophan at a modified carbon paste electrode incorporating TiO2 nanoparticles and quinizarine, J. Electroanal. Chem., 2010, vol. 644. p. 1.

    Article  CAS  Google Scholar 

  28. Hu, Y., Huang, Y., Tan, C., Zhang, X., Lu, Q., Sindoro, M., Huang, X., Huang, W., Wang, L., and Zhang, H., Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications, Mater. Chem. Front., 2017, vol. 1, p. 24.

    Article  CAS  Google Scholar 

  29. Tajik, S., Taher, M.A., and Beitollahi, H., First report for electrochemical determination of levodopa and cabergoline: application for determination of levodopa and cabergoline in human serum, urine and pharmaceutical formulations, Electroanalysis, 2014, vol. 26, p. 796.

    Article  CAS  Google Scholar 

  30. Idris, A.O., Mafa, J.P., Mabuba, N., and Arotiba, O.A., Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water, Russ. J. Electrochem., 2017, vol. 53, p. 170.

    Article  CAS  Google Scholar 

  31. Azadbakht, A. and Abbasi, A.R., Fabrication of a highly sensitive hydrazine electro- chemical sensor based on bimetallic Au-Pt hybrid nanocomposite onto modified electrode, Nano-Micro Lett., 2010, vol. 2, p. 296.

    Article  CAS  Google Scholar 

  32. Ganesh, P.S. and Kumara-Swamy, B.E., Voltammetric resolution of catechol and hydroquinone at eosin Y film modified carbon paste electrode, J. Mol. Liq., 2016, vol. 220, p. 208.

    Article  CAS  Google Scholar 

  33. Karimi-Maleh, H., Keyvanfard, M., Alizad, K., Fouladgar, M., Beitollahi, H., Mokhtari, A., and Gholami-Orimi, F., Voltammetric determination of N-actylcysteine using modified multiwall carbon nanotubes paste electrode, Int. J. Electrochem. Sci., 2011, vol. 6, p. 6141.

    CAS  Google Scholar 

  34. Wang, P., Xiao, J., Guo, M., Xia, Y., Li, Z., Jiang, X., and Huang, W., Voltammetric determination of 4-nitrophenol at graphite nanoflakes modified glassy carbon electrode, J. Electrochem. Soc., 2015, vol. 162, p. H72.

    Article  CAS  Google Scholar 

  35. Han, L., Tao, H., Huang, M., Zhang, Y., Qiao, S., and Shi, R., A hydrogen peroxide biosensor based on multiwalled carbon nanotubes-polyvinyl butyral film modified electrode, Russ. J. Electrochem., 2016, vol. 52, p. 115.

    Article  CAS  Google Scholar 

  36. Beitollahi, H., Movahedifar, F., Tajik, S., and Jahani, S., A review on the effects of introducing CNTs in the modification process of electrochemical sensors, Electroanalysis, 2018, vol. 31, no. 7, pp. 1195–1203. https://doi.org/10.1002/elan.201800370

    Article  CAS  Google Scholar 

  37. Yalcmer, F., Cevik, E., Senel, M., and Baykal, A., Development of an amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto nickel ferrite nanoparticle-chitosan composite, Nano-Micro Lett., 2011, vol. 3, p. 91.

    Article  Google Scholar 

  38. Yukird, J., Kongsittikul, P., Qin, J., Chailapakul, O., and Rodthongkum, N., ZnO graphene nanocomposite modified electrode for sensitive and simultaneous detection of Cd(II) and Pb(II), Synth. Met., 2018, vol. 245, p. 251.

    Article  CAS  Google Scholar 

  39. Kalate-Bojdi, M., Mashhadizadeh, M.H., Behbahani, M., Farahani, A., Hossein-Davarani, S.S., and Bagheri, A., Synthesis, characterization and application of novel lead imprinted polymer nanoparticles as a high selective electrochemical sensor for ultra-trace determination of lead ions in complex matrixes, Electrochim. Acta, 2014, vol. 136, p. 59.

    Article  CAS  Google Scholar 

  40. Beitollahi, H., Ghofrani-Ivari, S., and Torkzadeh-Mahani, M., Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO-CuO nanoplates and modifier, Mater. Sci. Eng. C, 2016, vol. 69, p. 128.

    Article  CAS  Google Scholar 

  41. Kumar, N. and Goyal, R.N., Melamine/Fe3O4 nanoparticles based molecular imprinted highly sensitive sensor for determination of hydrochlorothiazide: an antihypertensive drug, J. Electrochem. Soc., 2017, vol. 164, p. B240.

    Article  CAS  Google Scholar 

  42. Yu, L., Wu, H., Wu, B., Wang, Z., Cao, H., Fu, C., and Jia, N., Magnetic Fe3O4 reduced graphene oxide nanocomposites-based electrochemical biosensing, Nano-Micro Lett., 2014, vol. 6, p. 258.

    Article  Google Scholar 

  43. Sun, Y., Duan, L., Guo, Z., Duan-Mu, Y., Ma, M., Xu, L., Zhang, Y., and Gu, N., An improved way to prepare superparamagnetic magnetite-silica core–shell nanoparticles for possible biological application, J. Magn. Magn. Mater., 2005, vol. 285, p. 65.

    Article  CAS  Google Scholar 

  44. Beitollahi, H. and Garkani-Nejad, F., Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode, Electroanalysis, 2016, vol. 28, p. 2237.

    Article  CAS  Google Scholar 

  45. Huang, W., Xiao, X., Engelbrekt, C., Zhang, M., Li, S., Ulstrup, Je., Ci, L., Feng, J., Si, P., and Chi, Q., Graphene encapsulated Fe3O4 nanorods assembled into a mesoporous hybrid composite used as a high-performance lithium-ion battery anode material, Mater. Chem. Front., 2017, vol. 1, p. 1185.

    Article  CAS  Google Scholar 

  46. Bagheri, H., Shirzadmehr, A., Rezaei, M., and Khoshsafar, H., Determination of tramadol in pharmaceutical products and biological samples using a new nanocomposite carbon paste sensor based on decorated nanographene/tramadol-imprinted polymer nanoparticles/ionic liquid, Ionics, 2018, vol. 24, p. 833.

    Article  CAS  Google Scholar 

  47. Gasbarri, C. and Angelini, G., Polarizability over dipolarity for the spectroscopic behavior of azobenzenes in room-temperature ionic liquids and organic solvents, J. Mol. Liq., 2017, vol. 229, p. 185.

    Article  CAS  Google Scholar 

  48. Zhang, J., Wang, X., Zhang, S., Wang, W., Hojo, M., and Chen, Z., An electrochemical sensor for simultaneous determination of ponceau 4R and tartrazine based on an ionic liquid modified expanded graphite paste electrode, J. Electrochem. Soc., 2014, vol. 161, p. H453.

    Article  CAS  Google Scholar 

  49. Fernández, E., Vidal, L., Iniesta, J., Metters, J.P., and Banks, C.E., Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid-liquid microextraction for determination of 2,4,6-trinitrotoluene, Anal. Bioanal. Chem., 2014, vol. 406, p. 2197.

    Article  PubMed  CAS  Google Scholar 

  50. Park, K.W. and Hwa-Jung, J., Spectroscopic and electrochemical characteristics of a carboxylated graphene-ZnO composites, J. Power Sources, 2012, vol. 199, p. 379.

    Article  CAS  Google Scholar 

  51. Arvand, M. and Hassannezhad, M., Magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid, Mater. Sci. Eng. C, 2014, vol. 36, p. 160.

    Article  CAS  Google Scholar 

  52. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.

    Google Scholar 

Download references

Funding

The authors wish to thank Graduate University of Advanced Technology, Kerman, Iran for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hadi Beitollahi or Fariba Garkani Nejad.

Ethics declarations

The authors confirm that this article content has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadi Beitollahi, Fariba Garkani Nejad A Carbon Paste Electrode Modified by Graphene Oxide/Fe3O4@SiO2/Ionic Liquid Nanocomposite for Voltammetric Determination of Acetaminophen in the Presence of Tyrosine. Russ J Electrochem 55, 1162–1170 (2019). https://doi.org/10.1134/S1023193519120024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519120024

Keywords:

Navigation