Skip to main content
Log in

Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid–liquid microextraction for determination of 2,4,6-trinitrotoluene

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L−1 and 9 μg L−1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L−1), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Risticevic S, Niri VH, Vuckovic D, Pawliszyn J (2009) Anal Bioanal Chem 393:781–795

    Article  CAS  Google Scholar 

  2. Pena-Pereira F, Lavilla I, Bendicho C (2010) Trends Anal Chem 29:617–628

    Article  CAS  Google Scholar 

  3. Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9

    Article  CAS  Google Scholar 

  4. Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M (2010) Trends Anal Chem 29:602–616

    Article  CAS  Google Scholar 

  5. Sun P, Armstrong DW (2010) Anal Chim Acta 661:1–16

    Article  CAS  Google Scholar 

  6. Zhou Q, Bai H, Xie G, Xiao J (2008) J Chromatogr A 1177:43–49

    Article  CAS  Google Scholar 

  7. Baghdadi M, Shemirani F (2009) Anal Chim Acta 634:186–191

    Article  CAS  Google Scholar 

  8. Yao C, Anderson JL (2009) Anal Bioanal Chem 395:1491–1502

    Article  CAS  Google Scholar 

  9. Sun X-M, Sun Y, Wu L-W, Jiang C-Z, Yu X, Gao Y, Wang L-Y, Song D-Q (2012) Anal Methods 4:2074–2080

    Article  CAS  Google Scholar 

  10. Zhang Y, Lee HK (2012) Anal Chim Acta 750:120–126

    Article  CAS  Google Scholar 

  11. Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M (2008) Anal Chem 80:793–800

    Article  CAS  Google Scholar 

  12. Chisvert A, Román IP, Vidal L, Canals A (2009) J Chromatogr A 1216:1290–1295

    Article  CAS  Google Scholar 

  13. Metters JP, Kadara RO, Banks CE (2011) Analyst 136:1067–1076

    Article  CAS  Google Scholar 

  14. Buzzeo MC, Evans RG, Compton RG (2004) ChemPhysChem 5:1106–1120

    Article  CAS  Google Scholar 

  15. Pichtel J (2012) Appl Environ Soil Sci 2012:1–33

    Article  Google Scholar 

  16. Cortada C, Vidal L, Canals A (2011) Talanta 85:2546–2552

    Article  CAS  Google Scholar 

  17. Sun Q, Chen Z, Yuan D, Yuan D, Yu C-P, Mallavarapu M, Naidu R (2011) Chromatographia 73:631–637

    Article  CAS  Google Scholar 

  18. Giordano BC, Burgi DS, Collins GE (2010) J Chromatogr A 1217:4487–4493

    Article  CAS  Google Scholar 

  19. Goldman ER, Anderson GP, Lebedev N, Lingerfelt BM, Winter PT, Patterson CH, Mauro JM (2003) Anal Bioanal Chem 375:471–475

    CAS  Google Scholar 

  20. Cizek K, Prior C, Thammakhet C, Galik M, Linker K, Tsui R, Cagan A, Wake J, La Belle J, Wang J (2010) Anal Chim Acta 661:117–121

    Article  CAS  Google Scholar 

  21. Chen J-C, Shih J-L, Liu C-H, Liu C-H, Kuo M-Y, Zen J-M (2006) Anal Chem 78:3752–3757

    Article  CAS  Google Scholar 

  22. Chuang M-C, Windmiller JR, Santhosh P, Santhosh P, Ramirez GV, Galik M, Chou T-Y, Wang J (2010) Electroanalysis 22:2511–2518

    Article  CAS  Google Scholar 

  23. Caygill JS, Collyer SD, Holmes JL, Davis F, Higson S (2013) Analyst 138:346–352

    Article  CAS  Google Scholar 

  24. Hallam PM, Kampouris DK, Kadara RO, Banks CE (2010) Analyst 135:1947–1952

    Article  CAS  Google Scholar 

  25. Lee J, Murugappan K, Arrigan DWM, Silvester DS (2013) Electrochim Acta 101:158–168

    Article  CAS  Google Scholar 

  26. Montgomery DC (2009) Design and Analysis of Experiments, 7th edn. Wiley, New Jersey

    Google Scholar 

  27. Heyden YV, Hartmann C, Massart DL, Michel L, Kiechle P, Erni F (1995) Anal Chim Acta 316:15–26

    Article  Google Scholar 

  28. Fabre H, Mesplet N (2000) J Chromatogr A 897:329–338

    Article  CAS  Google Scholar 

  29. Cortada C, Vidal L, Canals A (2011) J Chromatogr A 1218:17–22

    Article  CAS  Google Scholar 

  30. Rabenecker P, Pinkwart K (2009) Propellants Explos Pyrotech 34:274–279

    Article  CAS  Google Scholar 

  31. Xiao C, Rehman A, Zeng X (2012) Anal Chem 84:1416–1424

    Article  CAS  Google Scholar 

  32. Zhang H-X, Cao A-M, Hu J-S, Wan L-J, Lee S-T (2006) Anal Chem 78:1967–1971

    Article  CAS  Google Scholar 

  33. Zang J, Guo CX, Hu F, Yu L, Li CM (2011) Anal Chim Acta 683:187–191

    Article  CAS  Google Scholar 

  34. Wang J, Hocevar SB, Ogorevc B (2004) Electrochem Commun 6:176–179

    Article  CAS  Google Scholar 

  35. Hrapovic S, Majid E, Liu Y, Male K, Luong J (2006) Anal Chem 78:5504–5512

    Article  CAS  Google Scholar 

  36. Shi G, Qu Y, Zhai Y, Liu Y, Sun Z, Yang J, Jin L (2007) Electrochem Commun 9:1719–1724

    Article  CAS  Google Scholar 

  37. Wang J, Pumera M (2006) Talanta 69:984–987

    Article  CAS  Google Scholar 

  38. Agüí L, Vega-Montenegro D, Yáñez-Sedeño P, Pingarrón JM (2005) Anal Bioanal Chem 382:381–387

    Article  Google Scholar 

  39. De Sanoit J, Vanhove E, Mailley P, Bergonzo P (2009) Electrochim Acta 54:5688–5693

    Article  Google Scholar 

  40. Tan SM, Chua CK, Pumera M (2013) Analyst 138:1700–1704

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Spanish Ministry of Science and Innovation (project n. CTQ2011-23968), Generalitat Valenciana (Spain) (projects n. ACOMP/2013/072 and PROMETEO/2012/038) and Universidad de Alicante (Spain) (project n. GRE12-45) for the financial support. E.F. also thanks Generalitat Valenciana for her fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorena Vidal or Antonio Canals.

Additional information

Published in the topical collection Microextraction Techniques with guest editors Miguel Valcárcel Cases, Soledad Cárdenas Aranzana and Rafael Lucena Rodríguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, E., Vidal, L., Iniesta, J. et al. Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid–liquid microextraction for determination of 2,4,6-trinitrotoluene. Anal Bioanal Chem 406, 2197–2204 (2014). https://doi.org/10.1007/s00216-013-7415-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7415-y

Keywords

Navigation