Skip to main content
Log in

Experimental and Theoretical Studies of Electrodialysis of Model Solutions Containing Aniline and Sulfuric Acid

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Demineralization of a solution containing aniline and sulfuric acid was studied at different voltages on the electrodialyzer with heterogeneous anion-exchange membranes MA-41 and perfluorinated homogeneous cation-exchange membranes MF-4SK. The main mass transfer characteristics of the process were evaluated. The limiting current density was evaluated for the cation- and anion-exchange membrane. The limiting current density on the anion-exchange membrane was reached much earlier than on the cation-exchange membrane. Electrodialysis was found to be most effective at voltages of up to 6 V in a pair chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Marti-Calatayud, M.C., Buzzi, D.C., Garcia-Gabal-don, M., Ortega, E., Bernardes, A.M., Tenorio, J.A.S., and Perez-Herranz, V., Sulfuric acid recovery from acid mine drainage by means of electrodialysis, Desalination, 2014, vol. 16, p. 120.

    Article  Google Scholar 

  2. Volkov, V.V., Mchedlishvili, B.V., Roldugin, V.I., Ivanchev, S.S., and Yaroslavtsev, A.B., Membranes and nanotechnologies, Nanotechnol. Russ., 2008, vol. 3, p. 656.

    Article  Google Scholar 

  3. Galama, A.H., Saakes, M., Bruning, H., Rijnaarts, H.H.M., and Post, J.W., Seawater predesalination with electrodialysis, Desalination, 2014, vol. 342, p. 61.

    Article  CAS  Google Scholar 

  4. Moon, S.-H. and Yun, S.-H., Process integration of electrodialysis for a cleaner environment, Curr. Opin. Chem. Eng., 2014, vol. 4, p. 25.

    Article  Google Scholar 

  5. Yaroslavtsev, A.B. and Nikonenko, V.V., Ion-exchange membrane materials: Properties, modification, and practical application, Nanotechnol. Russ., 2009, vol. 4, p. 137.

    Article  Google Scholar 

  6. Sata, T., Ion exchange membranes: Preparation, characterization, modification and application, R. Soc. Chem., 2004.

  7. Nagarale, R.K., Gohil, G.S., and Shahi, V.K., Recent developments on ion-exchange membranes and electro-membrane processes, Adv. Colloid Interface Sci., 2006, vol. 119, p. 97.

    Article  CAS  Google Scholar 

  8. Strathmann, H., Electrodialysis, a mature technology with a multitude of new applications, Desalination, 2010, vol. 264, p. 268.

    Article  CAS  Google Scholar 

  9. Campione, A., Gurreri, L., Ciofalo, M., Micale, G., Tamburini, A., and Cipollina, A., Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications, Desalination, 2018, vol. 434, p. 121.

    Article  CAS  Google Scholar 

  10. Al-Saydeh, S.A., El-Naas, M.H., and Zaidi, S.J., Copper removal from industrial wastewater: A comprehensive review, J. Ind. Eng. Chem., 2017, vol. 56, p. 35.

    Article  CAS  Google Scholar 

  11. Song, Y. and Zhao, Z., Recovery of lithium from spent lithium-ion batteries using precipitation and electrodialysis techniques, Sep. Purif. Technol., 2018, vol. 206, p. 335.

    Article  CAS  Google Scholar 

  12. Lafi, R., Gzara, L., Lajimi, R.H., and Hafiane, A., Treatment of textile wastewater by a hybrid ultrafiltration/electrodialysis process, Chem. Eng. Process., 2018, vol. 132, p. 105.

    Article  CAS  Google Scholar 

  13. Rotta, E.H., Bitencourt, C.S., Marder, L., and Bernardes, A.M., Phosphorus recovery from low phosphate-containing solution by electrodialysis, J. Membr. Sci., 2019, vol. 573, p. 293.

    Article  CAS  Google Scholar 

  14. Tanaka, N., Nagase, M., and Higa, M., Organic fouling behavior of commercially available hydrocarbon-based anion-exchange membranes by various organic-fouling substances, Desalination, 2012, vol. 296, p. 81.

    Article  CAS  Google Scholar 

  15. Mikhaylin, S. and Bazinet, L., Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control, Adv. Colloid Interface Sci., 2016, vol. 229, p. 34.

    Article  CAS  Google Scholar 

  16. Shishkina, S.V., Alalykina, I., and Maslenikova, I.Yu., Electrodialysis of solutions containing surfactants, Russ. J. Electrochem., 1996, vol. 32, p. 265.

    CAS  Google Scholar 

  17. Korngold, E., De Korosy, F., Rahay, R., and Taboch, M.F., Fouling of anion-selective membranes in electrodialysis, Desalination, 1970, vol. 8, p. 195.

    Article  CAS  Google Scholar 

  18. Slavinskaya, G.V. and Selemenev, V.F., Ful’vokisloty prirodnykh vod (Fulvic Acids of Natural Waters), Voronezh: Voronezh Gos. Univ., 2001.

  19. Bukhovets, A. and Eliseeva, T., Fouling of anion-exchange membranes in electrodialysis of aromatic amino acid solution, J. Membr. Sci., 2010, vol. 364, p. 339.

    Article  CAS  Google Scholar 

  20. Zabolotsky, V.I., Pismenskaya, N.D., Lactionov, E.V., and Nikonenko, V.V., Prediction of the behavior of long electrodialysis desalination channels through testing short channels, Desalination, 1996, vol.107, p. 245.

    Article  CAS  Google Scholar 

  21. Metodicheskie ukazaniya po fotometricheskomu izmereniyu kontsentratsii anilina v vozdukhe rabochei zony (Guidelines for Photometric Measurement of Aniline Concentration in the Working Area) (appr. by the USSR Ministry of Health; December 12, 1988; no. 4731-88). http://base.consultant.ru/cons/cgi/online.cgi?req=doc;base=ESU;n=11446

  22. Zabolotsky, V.I. and Nikonenko, V.V., Perenos ionov v membranakh (Ion Transport in Membranes), Moscow: Nauka, 1996.

  23. Sukhotin, A.M., Spravochnik po elektrokhimii (Handbook in Electrochemistry), Leningrad: Khimiya, 1981, p. 488.

  24. Sycheva, A.A.-R., Falina, I.V., and Berezina, N.P., Sorption and conducting properties of perfluorinated MF-4SK membranes in aqueous solutions containing phenylammonium ions, Russ. J. Electrochem., 2009, vol. 45, p. 108.

    Article  CAS  Google Scholar 

  25. Chérif, M., Mkacher, I., Dammak, L., Ben Salah, A., Walha, K., Grande, D., and Nikonenko, V., Water desalination by neutralization dialysis with ion-exchange membranes: Flow rate and acid/alkali concentration effects, Desalination, 2015, vol. 361, p. 13.

    Article  Google Scholar 

  26. Loza, N.V., Kononenko, N.A., Shkirskaya, S.A., and Berezina, N.P., Effect of modification of ion-exchange membrane MF-4SK on its polarization characteristics, Russ. J. Electrochem., 2006, vol. 42, p. 815.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 18-08-00771). The scientific equipment of the Ecological Analysis Multiaccess Center, Kuban State University, was used (unique ID no. RFMEFI59317X0008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Loza or N. A. Kononenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loza, N.V., Loza, S.A., Romanyuk, N.A. et al. Experimental and Theoretical Studies of Electrodialysis of Model Solutions Containing Aniline and Sulfuric Acid. Russ J Electrochem 55, 871–877 (2019). https://doi.org/10.1134/S102319351909009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351909009X

Keywords:

Navigation