Skip to main content
Log in

Fabrication of 1D Fe2O3 with Flexible Ligands as Anodes for Lithium Ion Batteries

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Fe2O3 short nanorods, nanorods and nanowires were prepared by a facile hydrothermal method by using different flexible ligands (oxalic acid, succinic acid, adipic acid) as templates to adjust the L/D (length/diameter) ratios of the one-dimensional (1D) Fe2O3–nanostructures for the first time. The growth mechanism of Fe2O3 nanorods and nanowires were proposed. Their potential applications as anodes for lithium ion batteries were investigated by electrochemical analysis. This novel straightforward strategy to fabricate 1D metal oxide with different L/D ratios may provide a promising method to make advanced Fe2O3-based nanostructures for Li-ion battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Wang, L.B., Yang, H.L., Liu, X.X., Zeng, R., Li, M., Huang, Y.H., and Hu, X.L., Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors, Angew. Chem. Int. Ed., 2017, vol. 56, no. 4, p. 1105.

    Article  CAS  Google Scholar 

  2. Flak, D., Chen, Q.L., Mun, B.S., Liu, Z., Rekas, M., and Braun, A., In situ ambient pressure XPS observation of surface chemistry and electronic structure of α‑Fe2O3 and γ-Fe2O3 nanoparticles, Appl. Surf. Sci., 2018, vol. 455, p. 1019.

    Article  CAS  Google Scholar 

  3. Peng, S., Wang, C., Xie, J., and Sun, S.H., Synthesis and stabilization of monodisperse Fe nanoparticles, J. Am. Chem. Soc., 2006, vol. 128, no. 33, p. 10676.

    Article  CAS  Google Scholar 

  4. Lin, Y.M., Abel, P.R., Heller, A., and Mullins, C.B., α‑Fe2O3 nanorods as anode material for lithium ion batteries, J. Phys. Chem. Lett., 2011, vol. 2, no. 22, p. 2885.

    Article  CAS  Google Scholar 

  5. Koo, B., Xiong, H., Slater, M.D., Prakapenka, V.B., Balasubramanian, M., Podsiadlo, P., Johnson, C.S., Rajh, T., and Shevchenko, E.V., Hollow iron oxide nanoparicles for application in lithium ion batteries, Nano Lett., 2012, vol. 12, p. 2429.

    Article  CAS  Google Scholar 

  6. Xiao, L., Wu, D.Q., Han, S., Huang, Y.S., Li, S., He, M.Z., Zhang, F., and Feng, X.L., Self-assembled Fe2O3/graphene aerogel with high lithium storage performance, ACS Appl. Mater. Interfaces., 2013, vol. 5, no. 9, p. 3764.

    Article  CAS  Google Scholar 

  7. Choi, W.S., Koo, H.Y., Li, Y., and Kim, D.Y., Templated synthesis of porous capsules with a controllable surface morphology and their application as gas sensors, Adv. Funct. Mater., 2007, vol. 17, no. 11, p. 1743.

    Article  CAS  Google Scholar 

  8. Chen, J., Xu, L., Li, W., and Gou, X., α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications, Adv. Mater., 2005, vol. 17, p. 582.

    Article  CAS  Google Scholar 

  9. Chen, J.S., Zhu, T., Yang, X.H., Yang, H.G., and Lou, X.W., Top-down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties, J. Am. Chem. Soc., 2010, vol. 132, no. 38, p. 13162.

    Article  CAS  Google Scholar 

  10. Jeong, J.M., Choi, B.G., Lee, S.C., Lee, K.G., Chang, S.J., Han, Y.K., Lee, Y.B., Lee, K.U., Kwon, S., Lee, G., Lee, C.S., and Huh, Y.S., Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes, Adv. Mater., 2013, vol. 25, no. 43, p. 6250.

    Article  CAS  Google Scholar 

  11. Wang, Z.L., Characterizing the structure and properties of individual wire-like nanoentities, Adv. Mater., 2000, vol. 12, no. 17, p. 1295.

    Article  CAS  Google Scholar 

  12. Hu, J., Odom, T.W., and Lieber, C.M., Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes, Acc. Chem. Res., 1999, vol. 32, no. 5, p. 435.

    Article  CAS  Google Scholar 

  13. Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., and Yan, H.Q., One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 2003, vol. 15, no. 5, p. 353.

    Article  CAS  Google Scholar 

  14. Park, M.S., Wang, G.X., Kang, Y.M., Wexler, D., Dou, S.X., and Liu, H.K., Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries, Angew. Chem. Int. Ed., 2007, vol. 46, no. 5, p. 750.

    Article  CAS  Google Scholar 

  15. Schmid, G., Large clusters and colloids. Metals in the embryonic state, Chem. Rev., 1992, vol. 92, no. 8, p. 1709.

    Article  CAS  Google Scholar 

  16. Zhang, G.H., Wang, T.H., Yu, X.Z., Zhang, H.N., and Duan, H.G., Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors, Nano Energy, 2013, vol. 2, no. 5, p. 586.

    Article  CAS  Google Scholar 

  17. Yuan, C.Z., Yang, L., Hou, L.R., Shen, L.F., Zhang, X.G., and Lou, X.W., Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors, Energy. Environ. Sci., 2012, vol. 5, no. 7, p. 7883.

    Article  CAS  Google Scholar 

  18. Yu, L., Zhang, G.Q., Yuan, C.Z., and Lou, X.W., Hierarchical NiCo2O4@MnO2 core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes, Chem. Commun., 2013, vol. 49, no. 2, p. 137.

    Article  CAS  Google Scholar 

  19. Wang, X.L., Mujtaba, J., Fang, F., Ahmad, M., Arandiyan, H., Yang, H.P., Sun, G.X., and Sun, H.Y., Constructing aligned γ-Fe2O3 nanorods with internal void space anchored on reduced graphene oxide nanosheets for excellent lithium storage, RSC Adv, 2015, vol. 5, no. 111, p. 91574.

    Article  CAS  Google Scholar 

  20. Zhong, Y., Fan, H.Q., Chang, L., Shao, H.B., Wang, J.M., Zhang, J.Q., and Cao, C.N., Novel iron oxide nanotube arrays as high-performance anodes for lithium ion batteries, J. Power. Sources, 2015, vol. 296, p. 255.

    Article  CAS  Google Scholar 

  21. Wang, C. and Huang, Z.X., Synthesis and photocatalytic activity of one-dimensional α-Fe2O3 nanorods, Chem. Lett., 2015, vol. 44, no. 12, p. 1682.

    Article  CAS  Google Scholar 

  22. Pervez, S.A., Kim, D., Farooq, U., Yaqub, A., Choi, J.H., Lee, Y.J., and Doh, C.H., Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB, ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 14, p. 11219.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by National Nature Science Foundation of China (21501021 and 21701180) and the Program for Dalian Excellent Talents and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Zhao.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin Liu, Wang, X., Zhao, H. et al. Fabrication of 1D Fe2O3 with Flexible Ligands as Anodes for Lithium Ion Batteries. Russ J Electrochem 55, 1144–1150 (2019). https://doi.org/10.1134/S1023193519090088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519090088

Keywords:

Navigation