Skip to main content
Log in

Fe2O3-encapsulated SiC nanowires with superior electrochemical properties as anode materials for the lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, 1D Fe2O3@SiC nanowires (NWs) were successfully synthesized by the high-temperature arc plasma with a subsequent oxidation process. Fe2O3 was encapsulated at the tip of SiC NWs, which features the advantages such as no side reactions, excellent mechanical flexibility, and good conductivity. This 1D structure can effectively accommodate volume expansion and inhibit mechanical degradation, while the conductive network greatly expands the electrode-electrolyte contact area, greatly promoting the conduction of electrons and the diffusion of Li+ ions, which leads to a remarkable improvement of the electrochemical performance. Benefiting from these structural advantages, the Fe2O3@SiC NW electrode delivers a reversible capacity of 656 mAh g−1 at 0.2 A g−1 after 100 cycles, and even up to 567 mAh g−1 at a high current density of 3 A g−1 after 500 cycles. This work offers an attractive strategy for the construction of the Fe2O3@SiC NW electrodes, which have great potential to meet the high-performance requirements for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  PubMed  Google Scholar 

  2. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193

    Article  CAS  PubMed  Google Scholar 

  3. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  PubMed  Google Scholar 

  4. Song M, Park S, Alamgir FM, Cho J, Liu M (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater Sci Eng R 72:203–252

    Article  Google Scholar 

  5. Lyu F, Sun Z, Nan B, Yu S, Cao L, Yang M, Li M, Wang W, Wu S, Zeng S, Liu H, Lu ZG (2017) A low-cost and novel Si-based gel for Li-ion batteries. ACS Appl Mater Interfaces 9:10699–10707

    Article  CAS  PubMed  Google Scholar 

  6. Kennedy T, Brandon M, Ryan KM (2016) Advances in the application of silicon and germanium nanowires for high-performance lithium-ion batteries. Adv Mater 28:5696–5704

    Article  CAS  PubMed  Google Scholar 

  7. Noorden RV (2014) The rechargeable revolution: a better battery. Nature 507:26–28

    Article  PubMed  Google Scholar 

  8. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  PubMed  Google Scholar 

  9. Wu HB, Chen JS, Hng HH, Wen Lou X (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542

    Article  CAS  PubMed  Google Scholar 

  10. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573

    Article  CAS  PubMed  Google Scholar 

  11. Jiao F, Bao J, Bruce PG (2007) Factors influencing the rate of Fe2O3 conversion reaction. Electrochem Solid-State Lett 10:A264–A226

    Article  CAS  Google Scholar 

  12. Reddy MV, Yu T, Sow CH, Shen ZX, Lim CT, Subba Rao GV, Chowdari BVR (2007) α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv Funct Mater 17:2792

    Article  CAS  Google Scholar 

  13. Wu CZ, Yin P, Zhu X, OuYang CZ, Xie Y (2006) Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J Phys Chem 110:17806–17812

    Article  CAS  Google Scholar 

  14. Liu H, Wang G, Park J, Wang J, Liu H, Zhang C (2009) Electrochemical performance of α-Fe2O3 nanorods as anode material for lithium-ion cells. Electrochim Acta 54:1733–1736

    Article  CAS  Google Scholar 

  15. Wu Z, Yu K, Zhang S, Xie Y (2008) Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J Phys Chem 112:11307

    CAS  Google Scholar 

  16. Zhang N, Han X, Liu Y, Hu X, Zhao Q, Chen J (2014) 3D Porous γ-Fe2O3@C Nanocomposite as high-performance anode material of Na-ion batteries. Adv Energy Mater 5:1401123

    Article  Google Scholar 

  17. Jiang XT, Guo WL, Lu P, Song D, Guo A, Liu J, Liang J, Hou F (2018) CNTs@γ-Fe2O3 @C composite electrode for high capacity lithium ion storage. Int J Hydrog Energy 43:14027–14033

    Article  CAS  Google Scholar 

  18. Zhang L, Wu HB, Xu R, Lou XW (2013) Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage. CrystEngComm 15:9332

    Article  CAS  Google Scholar 

  19. K. Cao, L. Jiao, H. Liu, Y. Liu, Y. Wang, Z. Guo, H. Yuan (2014) 3D hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries, Adv. Energy Mater 1401421

  20. Zhu J, Yin Z, Yang D, Sun T, Yu H, Hoster HE, Hng HH, Zhang H, Yan Q (2013) Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ Sci 6:987

    Article  CAS  Google Scholar 

  21. Cao Y, Zhang AQ, Luo HW, Gao HL, Yan J, Yan QQ, Liu YM, Zhang Y (2020) Hierarchical urchin-like Fe2O3 structures grown directly on Ti foils for binder-free lithium-ion batteries with fast charging/discharging properties. Inorg Chem Commun 113:107769

    Article  CAS  Google Scholar 

  22. Na Z, Huang G, Liang F, Yin D, Wang L (2016) A core–shell Fe/Fe2O3 nanowire as a high-performance anode material for lithium-ion batteries. Chem Eur J 22:1–8

    Article  Google Scholar 

  23. Wang B, Chen JS, Wu HB, Wang Z, Lou XW (2011) Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J Am Chem Soc 133:17146–17148

    Article  CAS  PubMed  Google Scholar 

  24. Zhang T, Zheng J, Liang Z, Zhao B, Zeng H, Guo W, Zhao L, Sun Y, Abdulhalim I, Jiang L (2019) Coordination competition-driven synthesis of triple-shell hollow α-Fe2O3 microspheres for lithium ion batteries. Electrochim Acta 306:151–158

    Article  CAS  Google Scholar 

  25. Saraf M, Natarajana K, Mobin SM (2017) Microwave assisted fabrication of a nanostructured reduced graphene oxide (rGO)/Fe2O3 composite as a promising next generation energy storage material. RSC Adv 7:309–317

    Article  CAS  Google Scholar 

  26. Zhou M, Gordin ML, Chen S, Xu T, Song J, Lv D, Wang D (2013) Enhanced performance of SiO/Fe2O3 composite as an anode for rechargeable Li-ion batteries. Electrochem Commun 28:79–82

    Article  CAS  Google Scholar 

  27. Chen Y, Liang J, Tian Q, Zhang W, Sui Z (2020) Facile construction of clustered Fe2O3/TiO2 composite for improved lithium storage performance. Synth Met 263:116353

    Article  CAS  Google Scholar 

  28. Luo Y, Luo J, Jiang J, Zhou W, Yang H, Qi X, Zhang H, Fan HJ, Yu DYW, Li CM, Yu T (2012) Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ Sci 5:6559

    Article  CAS  Google Scholar 

  29. Santhoshkumar P, Prasanna K, Sivagami IN, Jo YN, Kang SH, Lee CW (2017) Time efficient synthesis of MnO2 encapsulated a-Fe2O3 ellipsoids for lithium ion battery applications. J Alloys Compd 720:300–308

    Article  CAS  Google Scholar 

  30. Ivanov PA, Chelnokov VE (1992) Recent developments in SiC single-crystal electronics. Semicond Sci Technol 7:86–880

    Article  Google Scholar 

  31. Kumari TSD, Jeyakumara D, Kumar TP (2013) Nano silicon carbide: a new lithium-insertion anode material on the horizon. RSC Adv 3:15028

    Article  Google Scholar 

  32. Virojanadara C, Watcharinyanon S, Zakharov AA, Johansson LI (2010) Epitaxial graphene on 6H-SiC and Li intercalation. Phys Rev B: Condens Matter Mater Phys 82:205402

    Article  Google Scholar 

  33. Moradian R, Behzad S, Chegel R (2009) Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles. Phys Lett A 373:2260–2266

    Article  CAS  Google Scholar 

  34. Wang X, Liew KM (2012) Density functional study of interaction of lithium with pristine and stone-wales-defective single-walled silicon carbide nanotubes. J Phys Chem C 116:26888–26897

    Article  CAS  Google Scholar 

  35. Zhang H, Xu H (2014) Nanocrystalline silicon carbide thin film electrodes for lithium-ion batteries. Solid State Ionics 263:23–26

    Article  CAS  Google Scholar 

  36. Lipson AL, Chattopadhyay S, Karmel HJ, Fister TT, Emery JD, Dravid VP, Thackeray MM, Fenter PA, Bedzyk MJ, Hersam MC (2012) Enhanced lithiation of doped 6H silicon carbide (0001) via high temperature vacuum growth of epitaxial graphene. J Phys Chem C 116:20949–20957

    Article  CAS  Google Scholar 

  37. Capitani GC, Di Pierro S, Tempesta G (2007) The 6H-SiC structure model: further refinement from SCXRD data from a terrestrial moissanite. Am Mineral 92:403–407

    Article  CAS  Google Scholar 

  38. Stein A, Wang Z, Fierke MA (2009) Functionalization of porous carbon materials with designed pore architecture. Adv Mater 21:265–293

    Article  CAS  Google Scholar 

  39. Hu Y, Liu X, Zhang X, Wan N, Pan D, Li X, Bai Y, Zhang W (2016) Bead-curtain shaped SiC@SiO2 core-shell nanowires with superior electrochemical properties for lithium-ion batteries. Electrochim Acta 190:33–39

    Article  CAS  Google Scholar 

  40. Yin L, Gao YJ, Jeon I, Yang H, Kim J, Jeong SY, Cho CR (2019) Rice-panicle-like γ-Fe2O3@C nanofibers as high-rate anodes for superior lithium-ion batteries. Chem Eng J 356:60–68

    Article  CAS  Google Scholar 

  41. Hu H, Cheng H, Zhou J, Zhu Q, Yu Y (2017) Hierarchical porous Fe2O3 assisted with graphene-like carbon as high performance lithium battery anodes. Materials Today Physics 3:7–15

    Article  Google Scholar 

  42. Reddy MV, Yu T, Sow C, Shen ZX, Lim CT, Subba Rao GV, Chowdari BVR (2007) a-Fe2O3 Nanoflakes as an anode material for Li-ion batteries. Adv Funct Mater 17:2792–2799

    Article  CAS  Google Scholar 

  43. Yu JL, Lu WB, Smith JP, Booksh KS, Meng LH, Huang YD, Li QW, Byun JH, Oh Y, Yan YS, Chou TW (2017) A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv Energy Mater 7:1600976

    Article  Google Scholar 

  44. Chen KF, Chen X, Xue DF (2015) Hydrothermal route to crystallization of FeOOH nanorods via FeCl3•6H2O: effect of Fe3+ concentration on pseudocapacitance of iron-based materials. Cryst Eng Comm 17:1906–1910

    Article  CAS  Google Scholar 

  45. Tang QQ, Wang WQ, Wang GC (2015) The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors. J Mater Chem A 3:6662–6670

    Article  CAS  Google Scholar 

  46. Wang LB, Yang HL, Liu XX, Zeng R, Li M, Huang YH, Hu XL (2017) Constructing hierarchical tectorum-like a-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew Chem Int Ed 55(129):1–7

    CAS  Google Scholar 

  47. Huang H, Lu B, Lei JP, Dong XL (2009) Low-temperature nitridation of Fe nanoparticles precursor. J Nanosci Nanotechnol 9:7383–7387

    Article  CAS  PubMed  Google Scholar 

  48. Zheng Z, Li P, Huang J, Liu H, Zao Y, Hu Z, Zhang L, Chen H, Wang M, Peng D, Zhang Q (2020) High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design. Journal of Energy Chemistry 41:126–134

    Article  Google Scholar 

  49. Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, Que M, Forster M (2015) T. Chass_e, T. Pichler, Straightforward generation of pillared, microporous graphene frameworks for use in supercapacitors. Adv Mater 27:6714–6721

    Article  CAS  PubMed  Google Scholar 

  50. Yang Z, Shen J, Archer LA (2011) An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries. J Mater Chem 21:11092–11097

    Article  CAS  Google Scholar 

  51. Wang SQ, Zhang JY, Chen CH (2010) Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance. J Power Sources 195:5379–5381

    Article  CAS  Google Scholar 

  52. Chen JS, Zhu T, Yang XH, Yang HG, Lou XW (2010) Top-Down Fabrication of α-Fe2O3 Single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties. J Am Chem Soc 132:13162–13164

    Article  CAS  PubMed  Google Scholar 

  53. Chen H, Hua Y, Luo N, He X, Li Y, Zhang Y, Chen W, Huang S (2020) Lithiation Abilities of SiC bulks and surfaces: a first-principles study. J Phys Chem C 124:7031–7038

    Article  CAS  Google Scholar 

  54. Sun H, Xin G, Hu T, Yu M, Shao D, Sun X, Lian J (2014) High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat Commun 5:4526

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Han J, Gua X, Dimitrijev S, Hou Y, Zhang S (2013) Ultrathin Fe2O3 nanoflakes via a smart chemical stripping for high performance lithium storage. J Name 00:1–3

    Google Scholar 

  56. Zhang Q, Wang J, Dong J, Ding F, Li X, Zhang B, Yang S, Zhang K (2015) Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy 13:77–91

    Article  Google Scholar 

  57. Yu C (2019) Xiao Chen, Zhexi Xiao, Chao Lei, Chenxi Zhang, Xianqing Lin, Boyuan Shen, Rufan Zhang, and Fei Wei, Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions. Nano Lett 19:5124–5132

    Article  CAS  PubMed  Google Scholar 

  58. Ngo D, Le HTT, Pham X, Park C, Park C (2017) Facile Synthesis of Si@SiC composite as an anode material for lithium-ion batteries. ACS Appl Mater Interfaces 9:32790–32800

    Article  CAS  PubMed  Google Scholar 

  59. Cai W, Zhang F, Li B, Yang Y (2019) Yi Li, Fabrication of C/SiC/Si composite fibers from helical mesoporous silica and application as lithium ion battery anode. J Taiwan Inst Chem Eng 97:489–495

    Article  CAS  Google Scholar 

  60. Wen Z, Lu G, Cui S, Kim H, Ci S, Jiang J, Hurleyc PT, Chen J (2014) Rational design of carbon network cross-linked Si–SiC hollow nanosphere as anode of lithium-ion batteries. Nanoscale 6:342–351

    Article  CAS  PubMed  Google Scholar 

  61. Chen Z, Zhou M, Cao Y, Ai X, Yang H, Liu J (2012) In situ generation of few-layer graphene coatings on SnO2-SiC core-shell nanoparticles for high-performance lithium-ion storage. Adv Energy Mater 2:95–102

    Article  CAS  Google Scholar 

  62. Yang Y, Ren J-G, Wang X, Chui Y-S, Wu Q-H, Chen X, Zhang W (2013) Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries. Nanoscale 5:8689–8694

    Article  CAS  PubMed  Google Scholar 

  63. Jeon BJ, Lee JK (2014) Electrochemical characteristics of nc-Si/SiC composite for anode electrode of lithium ion batteries. J Alloys Compd 590:254–259

    Article  CAS  Google Scholar 

  64. Shen L, Lv H, Chen S, Kopold P, Aken PAV, Wu X, Maier J, Yu Y (2017) Peapod-like Li3VO4/N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors. Adv Mater 29:1700142

    Article  Google Scholar 

  65. Xia X, Chao D, Zhang Y, Zhan J, Zhong Y, Wang X, Wang Y, Shen ZX, Tu J, Fan HJ (2016) Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 12:3048–3058

    Article  CAS  PubMed  Google Scholar 

  66. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151

    Article  CAS  PubMed  Google Scholar 

  67. D. K. Schroder (2005) Semiconductor material and device characterization, Wiley

  68. Wang X, Hao H, Liu J, Huang T, Yu A (2011) A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim Acta 56:4065–4069

    Article  CAS  Google Scholar 

  69. Huang H, Gao S, Wu A, Cheng K, Li X, Gao X, Zhao J, Dong X, Cao GZ (2017) Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano Energy 31:74–83

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. U1908220) and the Research Project of Shanxi Datong University, People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinglong Dong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 748 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Fang, C., Muhammad, J. et al. Fe2O3-encapsulated SiC nanowires with superior electrochemical properties as anode materials for the lithium-ion batteries. Ionics 27, 2431–2444 (2021). https://doi.org/10.1007/s11581-021-04027-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04027-8

Keywords

Navigation