Skip to main content
Log in

Oxygen Reaction at Carbonaceous Materials with Different Structure in Electrolytes Based on Lithium Perchlorate and Aprotic Solvents

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The necessity of the studying of carbonaceous materials differing in their surface area and structure is called for by the fact that these materials are used until now in the designing of positive electrodes for lithium-oxygen current sources. Under the model conditions, the effect of some factors on the effectiveness of oxygen reduction reaction at the positive electrode is studied. Among them are: properties of the dimethylsulfoxide- and acetonitrile-based electrolytes, the carbonaceous material (ХС 72, Super P, and carbon nanotubes) structure and its relevant transport processes depending on the electrode active layer mass (thickness) and the polarization current density, which determines the oxygen reaction effectiveness at the carbonaceous material. The electrochemically active surface area is shown to increase with the specific surface area, which is determined by the carbonaceous material porous structure, its mass at the electrode, the solvent properties, and the reaction rate. The active layer thickness and current density must be chosen for each carbonaceous material individually, depending upon its structure. At that, the active layer entire surface must be electrochemically accessible; it must make possible the lithium peroxide formation and subsequent decomposition. In the dimethylsulfoxide-based electrolyte (high donor number), the oxygen reduction reaction is highly reversible; the lithium peroxide formation here occurs via disproportionation in the solution bulk and results in the formation of Li2O2 particles with disordered (in all probability, toroidal) structure. This facilitates the back reaction (Li2O2 anodic decomposition), in good agreement with literature data [1]. In acetonitrile-based electrolyte (low donor number), the oxygen reduction reaction occurs in adsorbed state, producing LiО2 that disproportionates at the electrode surface forming a lithium peroxide insulating film whose oxidation needs high overvoltage. On the strength of all the parameters, carbon nanotubes are most effective in the oxygen reduction reaction in the dimethylsulfoxide-based electrolyte, because the carbon nanotubes have large volume of mesopores for the reactant transport, high electrochemically active surface area for the Li2O2 accumulation, and thus provide high characteristics per electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aetukuri, N.B., McCloskey, B.D., García, J.M., Krupp, L.E., Viswanathan, V., and Luntz, A.C., Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries, Nat. Chem., 2015, vol. 7, p. 50.

    Article  CAS  Google Scholar 

  2. Xin Guo, Bing Sun, Dawei Su, Xiaoxue Liu, Hao Liu, Yong Wang, and Guoxiu Wang, Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance, Science Bulletin, 2017, vol. 62, no. 6, p. 442.

    Article  CAS  Google Scholar 

  3. Tan, P., Shyy, W., An, L., Wei, Z.H., and Zhao, T.S., A gradient porous cathode for non-aqueous lithiumair batteries leading to a high capacity, Electrochem. Commun., 2014, vol. 46, p. 111.

    Article  CAS  Google Scholar 

  4. Ruimin Yu, Wugang Fan, Xiangxin Guo, and Shaoming Dong, Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries, J. Power Sources, 2016, vol. 306, p. 402.

    Article  CAS  Google Scholar 

  5. Jiang, H.R., Zhao, T.S., Shi, L., Tan, P., and An, L., First-Principles Study of Nitrogen-, Boron-Doped Graphene and Co-Doped Graphene as the Potential Catalysts in Nonaqueous Li–O2 Batteries, J. Phys. Chem. C., 2016, vol. 120, no. 12, p. 6612.

    Article  CAS  Google Scholar 

  6. Wang, L., Ara, M., Wadumesthrige, K., Salley, S., and Simon, K.Y., Graphene nanosheet supported bifunctional catalyst for high cycle life Li-air batteries, J. Power Sources, 2013, vol. 234, p. 8.

    Article  CAS  Google Scholar 

  7. Mitchell, R.R., Gallant, B.M., Thompson, C.V., and Shao-Horn, Y., All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries, Energy Environ. Sci., 2011, vol. 4, p. 2952.

    Article  CAS  Google Scholar 

  8. Zhang, S.S., Kang, Xu, and Read, J., A non-aqueous electrolyte for the operation of Li/air battery in ambient environment, J. Power Sources, 2011, vol. 196, p. 3906.

    Article  CAS  Google Scholar 

  9. Galiotea, N.A., Jeong, S., Moraisa, W.G., Passerini, S., and Huguenina, F., The Role of Ionic Liquid in Oxygen Reduction Reaction for Lithium–air Batteries, Electrochim. Acta, 2017, vol. 247, p. 610.

    Article  Google Scholar 

  10. Donghong, D., Xiu, You, Wenjun, Ren, Huikai, Wei, Huihong, Liu, and Shibin, Liu. Oxygen reduction reaction of different electrodes in dimethyl sulfoxide solvent for Li–air batteries, Intern. J. Hydrogen Energy, 2015, vol. 40, no. 34, p. 10847.

    Article  Google Scholar 

  11. Feng, Wu, Yi, Xing, Li, L., Ji, Qian, Wenjie, Qu, Jianguo, Wen, Miller, D., Yusheng, Ye, Renjie, Chen, Amine, K., and Jun, Lu, Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li‒O2 Batteries, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 36, p. 23635.

    Article  Google Scholar 

  12. Yue, Shen, Dan, Sun, Ling, Yu, Wang, Zhang, Yuanyuan, Shang, Huiru, Tang, Junfang, Wu, Anyuan, Cao, and Yunhui, Huang, A high-capacity lithium–air battery with Pd modified carbon nanotube sponge cathode working in regular air, Carbon, 2013, vol. 62, p. 288.

    Article  Google Scholar 

  13. Cheng, H. and Scott, K., Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries, J. Power Sources, 2010, vol. 195, no. 5, p. 1370.

    Article  CAS  Google Scholar 

  14. Alaf, M., Tocoglu, U., Kartal, M., and Akbulut, H., Graphene supported heterogeneous catalysts for Li–O2 batteries, Applied Surf. Sci., 2016, vol. 380, p. 185.

    Article  CAS  Google Scholar 

  15. Belova, A.I., Kwabi, D.G., Yashina, L.V., Shao-Horn, Y., and Itkis, D.M., Mechanism of Oxygen Reduction in Aprotic Li–Air Batteries: The Role of Carbon Electrode Surface Structure, J. Phys. Chem. C., 2017, vol. 121, no. 3, 1569.

    Article  CAS  Google Scholar 

  16. Jinliang, Y., Jong-Sung, Y., and Sunden, B., Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-Air batteries, J. Power Sources, 2015, vol. 278, p. 352.

    Article  Google Scholar 

  17. Woo, H., Kang, J., Kim, J., Kim, C., Nam, S., and Park, B., Development of Carbon-Based Cathodes for Li–Air Batteries: Present and Future, Electron. Mater. Lett., 2016, vol. 12, no. 5, p. 551.

    Article  CAS  Google Scholar 

  18. Tan, P., Wei, K., Zongping, S., Meilin, L., and Meng, N., Advances in modeling and simulation of Li‒air batteries, Progr. Energy Combustion Sci., 2017, vol. 62, p. 155.

    Article  Google Scholar 

  19. Tan, P., Meng, Ni, Zongping, S., Bin, Chen, and Wei, Kong, Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product, Applied Energy, 2017, vol. 203, p. 254.

    Article  CAS  Google Scholar 

  20. Hardwick, L.J. and Bruce, P.G., The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes, Current Opinion/ Solid State Mater. Sci., 2012, vol. 16, no. 4, p. 178.

    Article  CAS  Google Scholar 

  21. Ku-Bong, Chung, Ju-Kyung, Shin, Tae-Young, Jang, Dong-Kyun, Noh, Yongsug, Tak, and Sung-Hyeon, Baeck, Preparation and analyses of MnO2/carbon composites for rechargeable lithium–air battery, Rev. Adv. Mater. Sci., 2011, vol. 28, no. 1, p. 54.

  22. Nitin, Kumar, Maxwell, D. Radin, B., Wood, C., Ogitsu, T., and Siegel, D.J., Surface-Mediated Solvent Decomposition in Li−Air Batteries: Impact of Peroxide and Superoxide Surface Terminations, J. Phys. Chem. C., 2015, vol. 119, no. 17, p. 9050.

    Article  Google Scholar 

  23. Yuya, K., Yasushi, S., and Noriko, Yoshizawa, Contribution of mesopores in MgO-templated mesoporous carbons to capacitance in non-aqueous electrolytes, J. Power Sources, 2015, vol. 276, p. 176.

    Article  Google Scholar 

  24. Wo, Xu, Kang, Xu, Viswanathan, V.V., Towne, S.A., Hardya, J.S., Jie, Xiaoa, Zimin, Niea, Dehong, Huc, Deyu, Wanga, and Ji-Guang, Zhanga, Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes, J. Power Sources, 2011, vol. 196, p. 9631.

    Article  Google Scholar 

  25. Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., and Hendrickson M.A., Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery, J. Phys. Chem. C., 2010, vol. 114, p. 9178.

    Article  CAS  Google Scholar 

  26. Calvo, E.J. and Mozhzhukhina, N., A rotating ring disk electrode study of the oxygen reduction reaction in lithium containing nonaqueous electrolyte, Electrochem. Commun., 2013, vol. 31, p. 56.

    Article  CAS  Google Scholar 

  27. Balaish, M., Kraytsberg, A., and Yair Ein-Eli, A critical review on lithium–air battery electrolytes, Phys. Chem. Chem. Phys., 2014, vol. 16, 2801.

    Article  CAS  Google Scholar 

  28. Mozhzhukhina, N., Longinotti, M.P., Corti, H.R., and Calvo, E.J., A conductivity study of preferential solvation of lithium ion in acetonitrile-dimethyl sulfoxide mixtures, Electrochim. Acta, 2015, vol. 154, p. 456.

    Article  CAS  Google Scholar 

  29. Bryantsev, V.S., Predicting the stability of aprotic solvents in Li-air batteries: pKa calculations of aliphatic C–H acids in dimethyl sulfoxide, Chem. Phys. Lett., 2013, vol. 558, p. 42.

    Article  CAS  Google Scholar 

  30. Gritzner, G. and Kuta, J., Recommendations on reporting electrode potentials in nonaqueous solvents, Pure Appl.Chem., 1982, vol. 54, no. 8, p. 1527.

    Article  Google Scholar 

  31. Meini, S., Piana, M., Beyer, H., Schwammlein, J., and Gasteiger, H.A., Effect of Carbon Surface Area on First Discharge Capacity of Li–O2 Cathodes and Cycle-Life Behavior in Ether-Based Electrolytes, J. Electrochem. Soc., 2012, vol. 159, p. A2135.

    Article  CAS  Google Scholar 

  32. Gregg, S.J. and Sing, K.S.W., Adsorption, Specific Area, Porosity. Academic, 1982.

    Google Scholar 

  33. Dubinin M.M., Chemistry and Physics of Carbon, New York, Marcel Dekker, 1966. vol. 2, p. 51.

    Google Scholar 

  34. Volochshuk, A.M., Dubinin, M.M., Moskovskaya, T.A., Ivakhnyuk, G.K., and Fedorov, N.F., Izv. Akad. nauk SSSR, Ser. Khim., 1988, no. 2, p. 277.

  35. Bogdanovskaya, V.A., Zhutaeva, G.V., Radina, M.V., Kazanskii, L.P., Tarasevich, M.R., Koltsova, E.M., Skichko, E.A., and Gavrilova, N.N., Physico-chemical properties of carbon nanotubes as supports for cathode catalysts of fuel cells. Surface structure and corrosion resistance, Prot. Metals Phys. Chem. Surf., 2016, vol. 52, no. 1, p. 45.

    Article  CAS  Google Scholar 

  36. Xin, Guo, Bing, Sun, Dawei, Su, Xiaoxue, Liu, Hao, Liu, Yong, Wang, and Guoxiu, Wang, Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance, Sci. Bulletin, 2017, vol. 62, p. 442.

    Article  Google Scholar 

  37. Johnson, L., Li, C., Liu, Z., Chen, Y., Freunberger, S.A., Ashok, P.C., Praveen, B.B., Dholakia, K., Tarascon, J.M., and Bruce, P.G., The Role of LiO2 Solubility in O2 Reduction in Aprotic Solvents and Its Consequences for Li–O2 Batteries, Nat. Chem., 2014, vol. 6, no. 12, p. 1091.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financed by the Ministry of sciences and higher education of RF and (in part) by the Russian foundation of basic research (project 16-03-00378).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bogdanovskaya.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanovskaya, V.A., Panchenko, N.V., Radina, M.V. et al. Oxygen Reaction at Carbonaceous Materials with Different Structure in Electrolytes Based on Lithium Perchlorate and Aprotic Solvents. Russ J Electrochem 55, 878–888 (2019). https://doi.org/10.1134/S1023193519090040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519090040

Keywords:

Navigation