Skip to main content
Log in

The Effect of Carbonaceous Material Morphology on Oxygen Reduction Reaction in Nonaqueous Electrolyte Containing Lithium Ions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical characteristics of carbonaceous materials differing in their specific surface area and porosity are studied by the method of cyclic voltammetry in 0.25 М LiClO4/DMSO electrolyte, both in inert and oxygen atmosphere. The value of the electrochemically active surface area that was estimated from cyclic voltammograms as the polarization capacitance was shown to increase with increase in the BET specific surface area. The efficiency in the oxygen reaction, measured in the oxygen atmosphere and expressed as the charge consumed for the formation of Li2O2 (QC) in the oxygen reduction reaction (the cathodic segment), and the process reversibility, expressed as the ratio of the charge consumed for oxygen evolution (QA) (the anodic segment) to QC, are mainly determined by the electrochemically active surface area and the porosity of the carbonaceous material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kraytsberg, A. and Ein-Eli, Y., Review on Li–air batteries—Opportunities, limitations and perspective, J. Power Sources, 2011, vol. 196, p. 886.

    Article  CAS  Google Scholar 

  2. Ding, N., Chien, S.W., Hor, T.S.A., Lum, R., Zong, Y., and Liu, Z., Influence of carbon pore size on the discharge capacity of Li–O2 batteries, J. Mater. Chem. A., 2014, vol. 2, p. 12433.

    Article  CAS  Google Scholar 

  3. Kim, M., Yoo, E., Ahn, W.-S., and Shim, S.E., Controlling porosity of porous carbon cathode for lithium oxygen batteries: Influence of micro and meso porosity, J. Power Sources, 2018, vol. 389, p. 20.

    Article  CAS  Google Scholar 

  4. Meini, S., Piana, M., Beyer, H., Schwaemmlein, J., and Gasteiger, H.A., Effect of carbon surface area on first discharge capacity of Li–O2 cathodes and cycle-life behavior in ether-based electrolytes, J. Electrochem. Soc., 2012, vol. 159, p. A2135.

    Article  CAS  Google Scholar 

  5. Chervin, C.N., Wattendorf, M.J., Long, J.W., Kucko, N.W., and Rolison, D.R., Carbon nanofoam-based cathodes for Li–O2 batteries: correlation of pore solid architecture and electrochemical performance, J. Electrochem. Soc., 2013, vol. 160, p. A1510.

    Article  CAS  Google Scholar 

  6. Tan, P., Shyy, W., Wei, Z.H., An, L., and Zhao, T.S., A carbon powder-nanotube composite cathode for non-aqueous lithium-air batteries, Electrochim. Acta, 2014, vol. 147, p. 1.

    Article  CAS  Google Scholar 

  7. Zhang, G.Q., Zheng, J.P., Liang, R., Zhang, C., Wang, B., Hendrickson, M., and Plichta, E.J., Lithium–air batteries using SWNT/CNF buckypapers as air electrodes, J. Electrochem. Soc., 2010, vol. 157, p. A953.

    Article  CAS  Google Scholar 

  8. Sahapatsombut, U., Cheng, H., and Scott, K., Modelling the micro–macro homogeneous cycling behaviour of a lithium–air battery, J. Power Sources, 2013, vol. 227, p. 243.

    Article  CAS  Google Scholar 

  9. Yoo, K., Banerjee, S., and Dutta, P., Modeling of volume change phenomena in a Li–air battery, J. Power Sources, 2014, vol. 258, p. 340.

    Article  CAS  Google Scholar 

  10. Jung, C.Y., Zhao, T.S., and An, L., Modeling of lithium–oxygen batteries with the discharge product treated as a discontinuous deposit layer, J. Power Sources, 2015, vol. 273, p.440.

    Article  CAS  Google Scholar 

  11. Wang, L., Zhao, X., Lu, Y., Xu, M., Zhang, D., Ruoff, R.S., Stevenson, K.J., and Goodenough, J.B., CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries, J. Electrochem. Soc., 2011, vol. 158, p. A1379.

    Article  CAS  Google Scholar 

  12. Li, L. and Manthiram, A., Decoupled bifunctional air electrodes for highperformance hybrid lithium-air batteries, Nano Energy, 2014, vol. 9, p. 94.

    Article  CAS  Google Scholar 

  13. Li, L., Liu, C., He, G., Fan, D., and Manthiram, A., Hierarchical pore-in-pore and wire-inwire catalysts for rechargeable Zn– and Li–air batteries with ultra-long cycle life and high cell efficiency, Energy Environ Sci., 2015, vol. 8, p. 3274.

    Article  CAS  Google Scholar 

  14. Lim, H.D., Song, H., Gwon, H., Park, K.-Y., Kim, J., Bae, Y., Kim, H., Jung, S.-K., Kim, T., Kim, Y.H., Lepró, X., Ovalle-Robles, R., Baughmand, R.H., and Kang, K., A new catalyst-embedded hierarchical air electrode for high-performance Li–O2 batteries, Energy Environ. Sci., 2013, vol. 6, p. 3570.

    Article  CAS  Google Scholar 

  15. Marinaro, M., Riek, U., Moorthy, S.K.E., Bernhard, J., Kaiser, U., Wohlfahrt-Mehrens, M., and Jörissen, L., Au-coated carbon cathodes for improved oxygen reduction and evolution kinetics in aprotic Li–O2 batteries, Electrochem. Commun., 2013, vol.37, p. 53.

    Article  CAS  Google Scholar 

  16. Zhu, D., Zhang, L., Song, M., Wang, X., and Chen, Y., An in situ formed Pd nanolayer as a bifunctional catalyst for Li–air batteries in ambient or simulated air, Electrochem. Commun., 2013, vol. 49, p. 9573.

    CAS  Google Scholar 

  17. Zhang, Z., Su, L., Yang, M., Hu, M., Bao, J., Wei, J., and Zhou, Z., A composite of Co nanoparticles highly dispersed on N-rich carbon substrates: an efficient electrocatalyst for Li–O2 battery cathodes, Chem. Commun., 2014, vol. 50, p. 776.

    Article  CAS  Google Scholar 

  18. Huang, X., Yu, H., Tan, H., Zhu, J., Zhang, W., Wang, C., Zhang, J., Wang, Y., Lv, Y., Zeng, Z., Liu, D., Ding, J., Zhang, Q., Srinivasan, M., Ajayan, P.M., Hoon, H., and Yan, Q., Carbon nanotube encapsulated noble metal nanoparticle hybrid as a cathode material for Li–oxygen batteries, Adv. Funct. Mater., 2014, vol. 24, p. 6516.

    Article  CAS  Google Scholar 

  19. Tan, P., Jiang, H.R., Zhu, X.B., An, L., Jung, C.Y., Wu, M.C., Shi, L., Shyy, W., and Zhao, T.S., Advances and challenges in lithium–air batteries, Applied Energy, 2017, vol. 204, p. 780.

    Article  Google Scholar 

  20. Ma, S., Wu, Y., Wang, J., Zhang, Y., Zhang, Y., Yan, X., Wei, Y., Liu, P., Wang, J., Jiang, K., Fan, S., Xu, Y., and Peng, Z., Reversibility of noble metal-catalyzed aprotic Li–O2 batteries, Nano Lett., 2015, vol. 15, p. 8084.

    Article  CAS  Google Scholar 

  21. McCloskey, B.D., Speidel, A., Scheffler, R., Miller, D.C., Viswanathan, V., Hummelshoj, J.S., Nørskov, J.K., and Luntz, A.C., Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries, J. Phys. Chem. Lett., 2012, vol. 3, p. 997.

    Article  CAS  Google Scholar 

  22. Itkis, D.M., Semenenko, D.A., Kataev, E.Yu., Belova, A.I., Neudachina, V.S., Sirotina, A.P., Hävecker, M., Teschner, D., Knop-Gericke, A., Dudin, P., Barinov, A., Goodilin, E.A., Shao-Horn, Y., and Yashina, L.V., Reactivity of carbon in lithium–oxygen battery positive electrodes, Nano Lett., 2013, vol. 13, p. 4697.

    Article  CAS  Google Scholar 

  23. Arkhipova, E.A., Ivanov, A.S., Maslakov, K.I., Egorov, A.V., Savilov, S.V., and Lunin, V.V., Mesoporous graphene nanoflakes for high performance supercapacitors with ionic liquid electrolyte, Microporous Mesoporous Materials, 2020, vol. 294, p. 109851.

    Article  CAS  Google Scholar 

  24. Bogdanovskaya, V.A., Panchenko, N.V., Radina, M.V., Andreev, V.N., Korchagin, O.V., Tripachev, O.V., and Novikov, V.T., Oxygen reaction at carbonaceous materials with different structure in electrolytes based on lithium perchlorate and aprotic solvents, Russ. J. Electrochem., 2019, vol. 55, p. 878.

    Article  CAS  Google Scholar 

  25. Olivares-Marín, M., Aklalouch M., and Tonti, D., Combined influence of meso- and macroporosity of soft-hard templated carbon electrodes on the performance of Li–O2 cells with different configurations, Nanomaterials, 2019, vol. 9, p. 810.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Sciences and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Kuzov or V. A. Bogdanovskaya.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzov, A.V., Bogdanovskaya, V.A., Emets, V.V. et al. The Effect of Carbonaceous Material Morphology on Oxygen Reduction Reaction in Nonaqueous Electrolyte Containing Lithium Ions. Russ J Electrochem 58, 296–302 (2022). https://doi.org/10.1134/S1023193522040073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522040073

Keywords:

Navigation