Skip to main content
Log in

Silver(I) Oxide on Silver–Zinc Alloys: Anodic Formation and Properties

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Anodic formation in deoxygenated 0.1 М KOH solution of Ag(I) oxide on Ag–Zn alloys with zinc atomic fraction from 5 to 30 at % and its properties were examined using cyclic voltammetry supplemented by photoelectrochemical measurements. Phase composition of the alloys is confirmed by X-ray diffraction analysis. Surface morphology is studied using scanning electron microscope. Ag(I) oxide anodically formed on silver–zinc alloys is shown possessing n-type conductance, with dominating donor defects. The donor defect concentration in the Ag(I) oxide increases, as the zinc content in the alloy grows, and this leads to a decrease in the maximum photocurrent and to narrowing of the space charge region. With the increasing of the zinc concentration in the alloy, the Ag2O particles’ size decreases and their surface density increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. All potential values in the paper are related to standard hydrogen electrode.

REFERENCES

  1. Skorchelletti, V.V., Theoretical Bases of Metal Corrosion (in Russian), Leningrad: Khimiya, 1973.

    Google Scholar 

  2. Marcus, P., Corrosion Mechanisms in Theory and Practice, New York: Marcel Dekker, 2002.

    Book  Google Scholar 

  3. McCafferty, E., Introduction to Corrosion Science, New York: Springer, 2010.

    Book  Google Scholar 

  4. Kaesche, H., Corrosion of metals, Berlin: Springer-Verlag, 2012.

    Google Scholar 

  5. Tödt, F. and Althof, F.-C., Korrosion und Korrosionsschutz, Berlin: De Gruyter, 1961.

    Google Scholar 

  6. Benard, J., Oxidation de Métaux, Paris: Cautier-Villars, 1962.

    Google Scholar 

  7. Marshakov, I.K., Thermodynamics and Corrosion of Alloys (in Russian), Voronezh: Voronezh. Univ., 1983.

    Google Scholar 

  8. Marshakov, I.K., Vvedenskii, A.V., Kondrashin, V.Yu., and Bokov, G.A., Anodic Dissolution and Selective Corrosion of Alloys (in Russian), Voronezh: Voronezh. Univ., 1988.

    Google Scholar 

  9. Kozaderov, O.A. and Vvedenskii, A.V., Mass transfer and phase formation in anodic selective dissolution of homogeneous alloys (in Russian), Voronezh: Nauchnaya kniga, 2004.

  10. Vvedenskii, A.V. and Kozaderov, O.A., in Linear Voltammetry of Anodic Selective Dissolution of Homogeneous Metallic Alloys in Voltammetry: Theory, Types and Applications, Saito, Y. and Kikuchi, T., Eds, New York: Nova Science, 2014, p. 363.

  11. Liu, H.T., Xia, X., and Guo, Z.P., A novel silver oxide electrode and its charge–discharge performance, J. Appl. Electrochem., 2012, vol. 32, no. 3, p. 275. https://doi.org/10.1023/A:1015541703258

    Article  Google Scholar 

  12. Lopez, T.M., Vilche, J.R., and Arvia, A.J., The electroformation and electroreduction of anodic films formed on silver in 0.1 M sodium hydroxide in the potential range of the Ag/Ag2O couple, J. Electroanal. Chem., 1984, no. 12, p. 207. https://doi.org/10.1016/S0022-0728(84)80165-5

  13. Ambrose, J. and Barradas, R.G., The electrochemical formation of Ag2O in KOH electrolyte, Electrochim. Acta, 1974, vol. 19, no. 11, p. 781. https://doi.org/10.1016/0013-4686(74)80023-X

    Article  CAS  Google Scholar 

  14. Assaf, F.H., Abd El-Rehim, S.S., and Zaky, A., Cyclic voltammetric behavior of α brass in alkaline media, Brit. Corr. J., 2001, vol. 36, no. 2, p. 143. https://doi.org/10.1179/000705901101501587

    Article  CAS  Google Scholar 

  15. Vvedenskii, A.V., Grushevskaya, S.N., Kudryashov, D.A., and Ganzha, S.V., Thin oxide films on metals and alloys: anodic formation kinetics and photoelectrochemical properties (in Russian), Voronezh: Nauchnaya kniga, 2016.

  16. Hull, M.N., Ellison, J.E., and Toni, J.E., The Anodic Behavior of Zinc Electrodes in Potassium Hydroxide Electrolytes, J. Electrochem. Soc., 1970, vol. 117, no. 2, p. 192. https://doi.org/10.1149/1.2407463

    Article  CAS  Google Scholar 

  17. Armstrong, R.D. and Bell, M.F., The active dissolution of zinc in alkaline solution, J. Electronal. Chem., 1974, vol. 55, no. 2, p. 201. https://doi.org/10.1016/S0022-0728(74)80120-8

    Article  CAS  Google Scholar 

  18. Aurian-Blajeni, B. and Tomkiewicz, M., Passive Zinc Electrodes: Application of the Effective Medium Theory, J. Electrochem. Soc., 1985, vol. 132, no. 4, p. 869. https://doi.org/10.1149/1.2113975

    Article  CAS  Google Scholar 

  19. Xiaoge, G.Z., Corrosion and Electrochemistry of Zinc, New York: Springer, 1996.

    Google Scholar 

  20. Protasova, I.V. and Nedobezhkina, L.A., Features of zinc dissolution during anodic polarization in sodium hydroxide solutions, Kondensirovannye sredy mezhfaznye granitsy (in Russian), 2016, no. 1(18), p. 91.

  21. Andrukhiv, A.I., Bachaev, A.A., Chiyanov, A.A., and Bandurkin, D.V., Influence of zinc intermediate compounds formed during its anodic dissolution on the parameters of electrode processes and properties of zinc solutions, Vestn. Nizhegorod. univer. im N.I. Lobachevskogo (in Russian), 2013, no. 5(1), p. 97.

  22. Mehdi, H.E., Hantehzadeh, M.R., and Valedbagi, Sh., Physical Properties of Silver Oxide Thin Film Prepared by DC Magnetron Sputtering: Effect of Oxygen Partial Pressure During Growth, J. Fusion Energy, 2013, vol. 32, no. 1, p. 28. https://doi.org/10.1007/s10894-012-9509-5

    Article  CAS  Google Scholar 

  23. Gao, X.-Y., Wang, S.-Y., Li J., Zheng, Y.-X., Zhang R.-J., Zhou, P., Yang Y.-M., and Chen, L.-Y., Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods, Thin Solid Films, 2004, vol. 455–456, p. 438. https://doi.org/10.1016/j.tsf.2003.11.242

    Article  CAS  Google Scholar 

  24. Barik, U.K., Srinivasan, S., Nagendra, C.L., and Subrahmanyam, A., Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen, Thin Solid Films, 2003, vol. 429, p. 129–134. https://doi.org/10.1016/S0040-6090(03)00064-6

    Article  CAS  Google Scholar 

  25. Ida, Y., Watase, S., Shinagawa, T., Watanabe, M., Chigane, M., Inaba, M., Nasaka, A. and Izaki, M., Direct electrodeposition of 1.46 eV band gap silver(I) oxide semiconductor films by electrogenerated acid, Chem. Mater., 2008, vol. 20, p. 1254–1256. .https://doi.org/10.1021/cm702865r

    Article  CAS  Google Scholar 

  26. Ferretti, A.M., Ponti, A., and Molteni G., Silver(I) oxide nanoparticles as a catalyst in the azide–alkyne cycloaddition, Tetrahedron Lett., 2015, vol. 56, no. 42, p. 5727–5730. https://doi.org/10.1016/j.tetlet.2015.08.083

    Article  CAS  Google Scholar 

  27. Wei, J., Lei, Y., Jia, H., Cheng, J., Hou, H., and Zheng, Z., Controlled in situ fabrication of Ag2O/AgO thin films by a dry chemical route at room temperature for hybrid solar cells, Dalton Trans., 2014, vol.43, no. 29, p. 11333–11338. https://doi.org/10.1039/C4DT00827H

    Article  CAS  PubMed  Google Scholar 

  28. Wei, W., Zhao, Q., Dong, J., and Li, J., A novel silver oxides oxygen evolving catalyst for water splitting, Int. J. Hydrogen Energy, 2011, vol. 36, no. 13, p. 7374–7380. https://doi.org/10.1016/j.ijhydene.2011.03.096

    Article  CAS  Google Scholar 

  29. Owen, C.C. and SonBinh, T.N., Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbonbased materials, Small, 2010, vol. 6, no. 6, p. 711. https://doi.org/10.1002/smll.200901934

    Article  CAS  Google Scholar 

  30. Kazemi, M.S., Fakharian, M., Dabiri, M., and Bazgir, A., Gold nanoparticles decorated reduced graphene oxide sheets with significantly high catalytic activity for ullmann homocoupling, RSC Adv., 2014, vol. 4, no. 10, p. 5243. https://doi.org/10.1039/C3RA45518A

    Article  Google Scholar 

  31. Liu, S., Yan, J., He, G., Zhong, D., Chen, J., Shi, L., Zhou, X., and Jiang H., Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine, Electroanal. Chem., 2012, vol. 672, p. 40. https://doi.org/10.1016/j.jelechem.2012.03.007

    Article  CAS  Google Scholar 

  32. Deng, K-Q., Zhou, J-H., and Li, X-F., Direct electrochemical reduction of graphene oxide and its application to determination of L-tryptophan and L-tyrosine, Colloids Surfaces B: Biointerfaces, 2013, vol. 101, p. 183. https://doi.org/10.1016/j.colsurfb.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  33. Dey, R.S. and Raj, C.R., Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material, J. Phys. Chem. C, 2010, vol. 114, no. 49, p. 21427. https://doi.org/10.1021/jp105895a

    Article  CAS  Google Scholar 

  34. Shahriary, L. and Athawale, A.A., Electrochemical deposition of silver/silver oxide on reduced graphene oxide for glucose sensing, J. Solid State Electrochem., 2015, vol. 19, p. 2255. https://doi.org/10.1007/s10008-015-2865-0

    Article  CAS  Google Scholar 

  35. Klingshirn, C.F., Meyer, B.K., Waag, A., Hoffmann, A., and Geurts, J., Zinc Oxide. From Fundamental Properties Towards Novel Applications, Berlin: Springer, 2010.

    Book  Google Scholar 

  36. Istomina, O.V., Evstropiev, S.K., Kolobkova, E.V., and Trofimov, A.O., Photolysis of Diazo Dye in Solutions and Films Containing Zinc and Silver Oxides, Optics Spectroscopy, 2018, vol. 124, no. 6, p. 774. https://doi.org/10.1134/S0030400X18060097

    Article  CAS  Google Scholar 

  37. Narang, J., Singhal, C., Mathur, A., Sharma, S., and Pundir, C.S., Portable bioactive paper based genosensor incorporated with Zn-Ag nanoblooms for herpes detection at the point-of-care, Int. J. Biolog. Macromolecules, 2018, vol. 107, p. 2559. https://doi.org/10.1016/j.ijbiomac.2017.10.146

    Article  CAS  Google Scholar 

  38. Ding, X, Zhang, Y., Ling, J., and Lin, C., Rapid mussel-inspired synthesis of PDA–Zn–Ag nanofilms on TiO2 nanotubes for optimizing the antibacterial activity and biocompatibility by doping polydopamine with zinc at a higher temperature, Colloids and Surfaces B: Biointerfaces, 2018 (Accepted), https://doi.org/10.1016/j.colsurfb.2018.07.014

  39. Sikora-Jasinska, M., Mostaed, E., Mostaed, A., Beanland, R., Mantovani, D., and Vedani, M., Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn–Ag alloys for degradable implant applications, Mater. Sci. Eng. C, 2017, vol. 77, p. 1170. https://doi.org/10.1016/j.msec.2017.04.023

    Article  CAS  Google Scholar 

  40. Jin, G., Qin, H., Cao, H., Qian, S., Zhao, Y., Peng, X., Zhang, X., Liu, X., and Chu, P.K., Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium, Biomaterials, 2014, vol. 35, no. 27, p. 7699. https://doi.org/10.1016/j.biomaterials.2014.05.074

    Article  CAS  PubMed  Google Scholar 

  41. Bunoiu, I., Mindroiu, M., Manole, C.C., Andrei, M., Nicoara, A., Vasilescu, E., Popa M., and Didilescu A.C., Electrochemical testing of a novel alloy in natural and artificial body fluids, Ann. Anatomy—Anatomischer Anzeiger, 2018, vol. 217, p. 54. https://doi.org/10.1016/j.aanat.2017.12.011

    Article  PubMed  Google Scholar 

  42. Xiang, Q., Meng, G., Zhang, Y., Xu, J., Xu, P., Pan, Q., and Yu, W., Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties, Sens. Actuators B, 2010, vol. 143, p. 635. https://doi.org/10.1016/j.snb.2009.10.007

    Article  CAS  Google Scholar 

  43. Meng, F., Hou, N., Jin, Z., Sun, B., Guo, Z., Kong, L., Xiao, X., Wu, H., Li, M., and Liu J., Ag-decorated ultra-thin porous single-crystalline ZnO nanosheets prepared by sunlight induced solvent reduction and their highly sensitive detection of ethanol, Sens. Actuators B, 2015, vol. 209, p. 975. https://doi.org/10.1016/j.snb.2014.12.078

    Article  CAS  Google Scholar 

  44. Ansari, S.A., Khan, M.M., Ansari, M.O., Lee, J., and Cho, M.H., Biogenic synthesis photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite, J. Phys. Chem. C, 2013, vol. 117, p. 27023. https://doi.org/10.1021/jp410063p

    Article  CAS  Google Scholar 

  45. Chen, X., Li, Y., Pan, X., Cortie, D., Huang, X., and Yi, Z., Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts, Nat. Commun., 2016, vol. 7, p. 12273. https://doi.org/10.1038/ncomms12273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu, Y.H., Xu, M., and Xu, L.X., Enhanced ultraviolet photocatalytic activity of Ag/ZnO nanoparticles synthesized by modified polymer-network gel method, J. Nanopart. Res, 2015, vol. 17, p. 1. https://doi.org/10.1007/s11051-015-3150-y

    Article  CAS  Google Scholar 

  47. Shuaishuai M., Jinjuan X.,Yuming Z., and Zewu Z., Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity, J. Mater. Chem. A, 2014, vol. 2, no. 20, p. 7272. https://doi.org/10.1039/C4TA00464G

    Article  Google Scholar 

  48. Zhang, Q., Xie, G., Xu, M., Su, Y., Tai, H., Du, H., and Jiang, Y., Visible light-assisted room temperature gas sensing with ZnO–Ag heterostructure nanoparticles, Sens. Actuators B: Chem., 2018, vol. 259, p. 269.

    Article  CAS  Google Scholar 

  49. Gurevich, Yu.Ya. and Pleskov, Yu.V., Semiconductor Photoelectrochemistry, New York, Consultants Bureau, 1986.

    Google Scholar 

  50. Bard, A.J., Stratmann, M., and Licht, S., Encyclopedia of Electrochemistry, vol. 6: Semiconductor Electrodes and Photoelectrochemistry, Weinheim: Wiley–VCH, 2002.

    Google Scholar 

  51. Giménez, S. and Bisquert, J., Photoelectrochemical Solar Fuel Production: From Basic Principles to Advanced Devices, Switzerland: Springer International Publishing, 2016.

    Book  Google Scholar 

  52. Massalski, T.B., Binary Alloy Phase Diagrams, vol. 1, Ohio: American Society for Metals, Metals Park, 1986.

    Google Scholar 

  53. Guzmán, D., Rivera, O., Aguilar, C., Ordoñez, S., Martínez, C., Serafini, D., and Rojas, P., Mechanical alloying and subsequent heat treatment of Ag–Zn powders, Trans. Nonferrous Metals Soc. China, vol. 23, no. 7, 2013, p. 2071. https://doi.org/10.1016/S1003-6326(13)62698-9

    Article  CAS  Google Scholar 

  54. Pearson, W.B., A Handbook of Lattice Spacings and Structures of Metals and Alloys, London: Pergamon, 1958.

    Google Scholar 

  55. New Handbook of Chemist and Technologist: Electrode Processes. Chemical Kinetics and Diffusion. Colloid Chemistry (in Russian), Simanova, S.A., Ed., St. Petersburg: ANO NPO Professional, 2004.

    Google Scholar 

  56. Chandra-Ambhorn, S. and Chumpanya, P., High temperature oxidation behaviour of Ag–36.35 wt % Zn and Ag–38.50 wt % Zn–0.60 wt % Al, Corr. Sci., 2018 vol. 131, p. 38. https://doi.org/10.1016/j.corsci.2017.11.007

    Article  CAS  Google Scholar 

  57. Gerischer, H., Models for the discussion of the photo-electrochemical response of oxide layers on metals, Corr. Sci., 1989, vol. 29, nos. 2–3, p. 257. https://doi.org/10.1016/0010-938X(89)90034-6

    Article  CAS  Google Scholar 

  58. Kudryashov, D.A., Grushevskaya, S.N., Ganzha, S.V., and Vvedenskii, A.V., Effect of the crystal face orientation and alloying with gold on the properties of thin anodic films of Ag(I) oxide: I. Photocurrent, Prot. Metals Phys. Chem. Surf., 2009, vol. 45, p. 501. https://doi.org/10.1134/S2070205109050013

    Article  CAS  Google Scholar 

  59. Kudryashov, D.A., Grushevskaya, S.N., Olalekan, O., Kukhareva, N.V., and Vvedenskii, A.V., Effect of orientation of crystal face of silver and its alloying with gold on properties of thin anodic Ag(I) oxide films: II. Photopotential, Prot. Metals Phys. Chem. Surf., 2009, vol. 46, p. 32. https://doi.org/10.1134/S2070205110010041

    Article  CAS  Google Scholar 

  60. Chatterjee, K., Banerjee, S., and Chakravorty, D., Plasmon resonance shifts in oxide-coated silver nanoparticles, Phys. Rev. B, 2002, vol. 66, no. 8, P. 085421. https://doi.org/10.1103/PhysRevB.66.085421

    Article  CAS  Google Scholar 

  61. Jiang, Z.Y., Huang, S.Y., and Qian, B. Semiconductor properties of Ag2O film formed on the silver electrode in 1 M NaOH solution, Electrochim. Acta, 1994, vol. 39, no. 16, p. 2465. https://doi.org/10.1016/0013-4686(94)E0149-I

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGES

The experiments were performed using equipment from the common use center of the Voronezh State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Grushevskaya.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murtazin, M.M., Nesterova, M.Y., Grushevskaya, S.N. et al. Silver(I) Oxide on Silver–Zinc Alloys: Anodic Formation and Properties. Russ J Electrochem 55, 680–689 (2019). https://doi.org/10.1134/S1023193519070085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519070085

Keywords:

Navigation