Skip to main content
Log in

Study of Annealing Effects on Ag2O Nanoparticles Generated by Electrochemical Spark Process

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We describe a green process for the generation of silver oxide (Ag2O) nanoparticles from silver material through an electrochemical spark (discharge) process. The annealing operation was carried out on the produced nanoparticles to observe changes in the particle morphology and different properties. Ag2O nanoparticles were characterized by x-ray diffraction analysis, Fourier-transform infrared spectroscopy, ultraviolet–visible spectroscopy, field emission scanning electron microscopy, energy-dispersive x-ray (EDX) spectroscopy and high-resolution transmission electron microscopy. With the rise in annealing temperature, the average crystal size of Ag2O nanoparticles was increased proportionally and the shape was also changed. Plate-type structures were attained with high annealing temperatures. The EDX result confirmed the presence of silver and oxygen atoms. The band gap of the nanoparticle samples, which were produced by direct current and pulsating direct current, was noted to be 1.6 eV and 1.9 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Schoonman, Solid State Ion. 135, 5 (2000).

    Article  Google Scholar 

  2. A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, J. Biosci. Bioeng. 100, 1 (2005).

    Article  Google Scholar 

  3. A. Yoshida and N. Toshima, J. Electron. Mater. 43, 1492 (2014).

    Article  Google Scholar 

  4. S. Guo and E. Wang, Anal. Chim. Acta 598, 181 (2007).

    Article  Google Scholar 

  5. J. Beltran-Huarac, J. Palomino, O. Resto, J. Wang, W.M. Jadwisienczak, B.R. Weiner, and G. Morell, RSC Adv. 4, 38103 (2014).

    Article  Google Scholar 

  6. W. Wang, Q. Zhao, J. Dong, and J. Li, Int. J. Hydrog. Energy 36, 7374 (2011).

    Article  Google Scholar 

  7. E. Sanli, B.Z. Uysal, and M.L. Aksu, Int. J. Hydrog. Energy 33, 2097 (2008).

    Article  Google Scholar 

  8. V.V. Petrov, T.N. Nazarova, A.N. Korolev, and N.F. Kopilova, Sens. Actuator B Chem. 133, 291 (2008).

    Article  Google Scholar 

  9. Y. Ida, S. Watase, T. Shinagawa, M. Watanabe, M. Chigane, M. Inaba, A. Tasaka, and M. Izaki, Chem. Mater. 20, 1254 (2008).

    Article  Google Scholar 

  10. W.-X. Li, C. Stampfl, and M. Scheffler, Phys. Rev. Lett. 90, 256102 (2003).

    Article  Google Scholar 

  11. Y.-H. Wang and H.-Y. Gu, Microchim. Acta 164, 41 (2009).

    Article  Google Scholar 

  12. R.J. Chimentao, I. Kirm, F. Medina, X. Rodriguez, Y. Cesteros, P. Salagre, and J.E. Sueiras, Chem. Commun. 7, 846 (2004).

    Article  Google Scholar 

  13. C. Fang, A.V. Ellis, and N.H. Voelcker, Electrochim. Acta 59, 346 (2012).

    Article  Google Scholar 

  14. S. Jradi, L. Balan, X.H. Zeng, J. Plain, D.J. Lougnot, P. Royer, R. Bachelot, S. Akil, O. Soppera, and L. Vidal, Nanotechnology 21, 95605 (2010).

    Article  Google Scholar 

  15. K.K. Caswell, C.M. Bender, and C.J. Murphy, Nano Lett. 3, 667 (2003).

    Article  Google Scholar 

  16. D.C. Tien, C.Y. Liao, J.C. Huang, K.H. Tseng, J.K. Lung, T.T. Tsung, W.S. Kao, T.H. Tsai, T.W. Cheng, and B.S. Yu, Rev. Adv. Mater. Sci 18, 750 (2008).

    Google Scholar 

  17. C.-H. Lo, T.-T. Tsung, and H.-M. Lin, J. Alloys Compd. 434, 659 (2007).

    Article  Google Scholar 

  18. D.-C. Tien, K.-H. Tseng, C.-Y. Liao, and T.-T. Tsung, J. Alloys Compd. 473, 298 (2009).

    Article  Google Scholar 

  19. L. Godson, B. Raja, D.M. Lal, and S. Wongwises, Exp. Heat Transf. 23, 332 (2010).

    Article  Google Scholar 

  20. K.-H. Tseng, Y.-C. Chen, and J.-J. Shyue, J. Nanopart. Res. 13, 1865 (2011).

    Article  Google Scholar 

  21. A.A. Ashkarran, Appl. Phys. A 107, 401 (2012).

    Article  Google Scholar 

  22. M.A. Etman, Nanosci. Nanotechnol. 3, 56 (2013).

    Google Scholar 

  23. M. Stein, D. Kiesler, and F.E. Kruis, J. Nanopart. Res. 15, 1400 (2013).

    Article  Google Scholar 

  24. J.-P. Borra, N. Jidenko, J. Hou, and A. Weber, J. Aerosol Sci. 79, 109 (2015).

    Article  Google Scholar 

  25. A.A. Ashkarran, Curr. Appl. Phys. 10, 1442 (2010).

    Article  Google Scholar 

  26. M. Miranzadeh and M.Z. Kassaee, Chem. Eng. J. 257, 105 (2014).

    Article  Google Scholar 

  27. M.M. Rahman, S.B. Khan, A.M. Asiri, and A.G. Al-Sehemi, Electrochim. Acta 112, 422 (2013).

    Article  Google Scholar 

  28. J. Fang, P.M. Leufke, R. Kruk, D. Wang, T. Scherer, and H. Hahn, Nano Today 5, 175 (2010).

    Article  Google Scholar 

  29. P. Kumar, P.K. Singh, M. Hussain, and A. Kumar Das, Adv. Sci. Lett. 22, 3 (2016).

    Article  Google Scholar 

  30. P.K. Singh, P. Kumar, M. Hussain, A.K. Das, and G.C. Nayak, Bull. Mater. Sci. 39, 469 (2016).

    Article  Google Scholar 

  31. R. Wüthrich and A. Allagui, Electrochim. Acta 55, 8189 (2010).

    Article  Google Scholar 

  32. A. Hickling and M.D. Ingram, J. Electroanal. Chem. 8, 65 (1959).

    Google Scholar 

  33. A. Hickling and M.D. Ingram, Trans. Faraday Soc. 60, 783 (1964).

    Article  Google Scholar 

  34. F. Fang, J. Kennedy, E. Manikandan, J. Futter, and A. Markwitz, Chem. Phys. Lett. 521, 86 (2012).

    Article  Google Scholar 

  35. S.U. Ilyas, R. Pendyala, and N. Marneni, Chem. Eng. Technol. 37, 2011 (2014).

    Article  Google Scholar 

  36. I. Haas, S. Shanmugam, and A. Gedanken, J. Phys. Chem. B 110, 16947 (2006).

    Article  Google Scholar 

  37. W. He, X. Duan, L. Zhu, and J. Cent, S. Univ. Technol. 16, 708 (2009).

    Article  Google Scholar 

  38. S. Deshpande, S. Patil, S.V.N.T. Kuchibhatla, and S. Seal, Appl. Phys. Lett. 87, 133113 (2005).

    Article  Google Scholar 

  39. B.D. Cullity and S.R. Stock, X-Ray Diffraction, 2nd ed. (Reading: Addison-Wesley, 1978), pp. 102–111.

    Google Scholar 

  40. S. Rehman, A. Mumtaz, and S.K. Hasanain, J. Nanopart. Res. 13, 2497 (2011).

    Article  Google Scholar 

  41. C.C. Baker, A. Pradhan, and S.I. Shah, Encyclopedia of Nanoscience and Nanotechnology (Valencia: American Scientific Publishers, 2004), pp. 449–473.

    Google Scholar 

  42. E. Esmaeili, M. Salavati-Niasari, F. Mohandes, F. Davar, and H. Seyghalkar, Chem. Eng. J. 170, 278 (2011).

    Article  Google Scholar 

  43. N. Goswami and D.K. Sharma, Phys. E Low. Dimens. Syst. Nanostruct. 42, 1675 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Bishwakarma, H., Shubham et al. Study of Annealing Effects on Ag2O Nanoparticles Generated by Electrochemical Spark Process. J. Electron. Mater. 46, 5715–5727 (2017). https://doi.org/10.1007/s11664-017-5614-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5614-6

Keywords

Navigation