Skip to main content
Log in

New Gas-Diffusion Electrode Based on Heterocyclic Microporous Polymer PIM-1 for High-Temperature Polymer Electrolyte Membrane Fuel Cell

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Polymer of intrinsic microporosity PIM-1 was used for electrospun polymer nanofiber producing. After pyrolysis, the obtained nanofibers, in a form of entire mat, were used as a support for cathode electrocatalyst for high-temperature polymer electrolyte membrane fuel cell on polymer polybenzimidazole membrane. The material was characterized by the methods of standard contact porosimetry, Raman spectroscopy and scanning electron microscopy. The I-V curves for membrane-electrode assembly suggest a possibility of using the carbon material for electrodes in a fuel cell on polymer membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Li, Q., Aili, D., Hjuler, H.A., and Jensen, J.O., High Temperature Polymer Electrolyte Membrane Fuel Cells, Approaches, Status and Perspectives, Cham: Springer, 2016.

    Book  Google Scholar 

  2. Zhang, J., PEM Fuel Cell Electrocatalyst and Catalyst Layers, London: Springer, 2008.

    Book  Google Scholar 

  3. Zeis, R., Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells, Beilstein J. Nanotechnol., 2015, vol. 6, p. 68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Araya, S.S., Zhou, F., Liso, V., Sahlin, S.L., Vang, J.R., Thomas, S., Gao, X., Jeppesen, C., and Kaer, S.K., A comprehensive review of PBI-based high temperature PEM fuel cells, Int. J. Hydrogen Energy, 2016, vol. 41, p. 21310.

    Article  CAS  Google Scholar 

  5. Chandan, A., Hattenberger, M., El-kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram, A., and Bujalski, W., High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review, J. Power Sources., 2013, vol. 231, p. 264.

    Article  CAS  Google Scholar 

  6. Steele, B.C. and Heinzel, A., Materials for fuel-cell technologies, Nature, 2001, vol. 414, p. 345.

    Article  CAS  PubMed  Google Scholar 

  7. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishukata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K., and Iwashita, N., Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, p. 3904.

    Article  CAS  PubMed  Google Scholar 

  8. Debe, M.K., Electrocatalyst approaches and challenges for automotive fuel cells, Nature, 2012, vol. 486, p. 43.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., and Adroher, X.C., A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, 2011, vol. 88, p. 981.

    Article  CAS  Google Scholar 

  10. Zhang, L., Aboagye, A., Kelkar, A., Lai, C., and Fong, H., A review: carbon nanofibers from electrospun polyacrylonitrile and their applications, J. Mater. Sci., 2014, vol. 49, p. 463.

    Article  CAS  Google Scholar 

  11. Tenchurin, T.Kh., Krasheninnikov, S.N., Orekhov, A.S., Chvalun, S.N., Shepelev, A.D., Belousov, S.I., and Gulyaev, A.I., Rheological features of fiber spinning from polyacrylonitrile solutions in an electric field. Structure and properties, Fibre Chem., 2014, vol. 46, p. 151.

    Article  CAS  Google Scholar 

  12. Dong, Z., Kennedy, S.J., and Wu, Y., Electrospinning materials for energy-related applications and devices, J. Power Sources., 2011, vol. 196, p. 4886.

    Article  CAS  Google Scholar 

  13. Yusof, N. and Ismail, A.F., Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review, J. Anal. Appl. Pyrolysis., 2012, vol. 93, p. 1.

    Article  CAS  Google Scholar 

  14. Zhigalina, V.G., Zhigalina, O.M., Ponomarev, I.I., Skupov, K.M., Razorenov, D.Y., Ponomarev, I.I., Kiselev, N.A., and Leitinger, G., Electron microscopy study of new composite materials based on electrospun carbon nanofibers, CrystEngComm, 2017, vol. 19, p. 3792.

    Article  CAS  Google Scholar 

  15. Ponomarev, I.I., Filatov, Y.N., Ponomarev, Iv.I., Filatov, I.Y., Razorenov, D.Y., Skupov, K.M., Zhigalina, O.M., and Zhigalina,V.G., Electroforming on nitrogen-containing polymers and derived nonfabric nanofibre carbon materials, Fibre Chem., 2017, vol. 49, p. 183.

    Article  CAS  Google Scholar 

  16. Ponomarev, I.I., Skupov, K.M., Razorenov, D.Yu., Zhigalina, V.G., Zhigalina, O.M., Ponomarev, Iv.I., Volkova, Yu.A., Kondratenko, M.S., Bukalov, S.S., and Davydova, E.S., Electrospun nanofiber pyropolymer electrodes for fuel cell on polybenzimidazole membranes, Russ. J. Electrochem., 2016, vol. 52, p. 735.

    Article  CAS  Google Scholar 

  17. Ponomarev, I.I., Ponomarev, Iv.I., Filatov, I.Yu., Filatov, Yu.N., Razorenov, D.Yu., Volkova, Yu.A., Zhigalina, O.M., Zhigalina, V.G., Grebenev V.V., and Kiselev, N.A., Design of electrodes based on a carbon nanofiber nonwoven material for the membrane electrode assembly of a polybenzimidazole-membrane fuel cell, Dokl. Phys. Chem., 2013, vol. 448, p. 23.

    Article  CAS  Google Scholar 

  18. Skupov, K.M., Ponomarev, I.I., Razorenov, D.Yu., Zhigalina, V.G., Zhigalina, O.M., Ponomarev, Iv.I., Volkova, Yu.A., Volfkovich, Yu.M., and Sosenkin, V.E., Carbon nanofiber paper cathode modification for higher performance of phosphoric acid fuel cells on polybenzimidazole membrane, Russ. J. Electrochem., 2017, vol. 53, p. 728.

    Article  CAS  Google Scholar 

  19. Skupov, K.M., Ponomarev, I.I., Razorenov, D.Y., Zhigalina, V.G., Zhigalina, O.M., Ponomarev, Iv.I., Volkova, Y.A., Volfkovich, Y.M., and Sosenkin, V.E., Carbon nanofiber paper electrodes based on heterocyclic polymers for high temperature polymer electrolyte membrane fuel cell, Macromol. Symp., 2017, vol. 375, p. 1600188.

    Article  CAS  Google Scholar 

  20. Ponomarev, I.I., Razorenov, D.Yu., Ponomarev, Iv.I., Volkova, Yu.A., and Skupov, K.M., Synthesis and studies of polybenzimidazoles for high-temperature fuel cell, Russ. J. Electrochem., 2014, vol. 50, p. 694.

    Article  CAS  Google Scholar 

  21. Kondratenko, M.S., Ponomarev, I.I., Gallyamov, M.O., Razorenov, D.Y., Volkova, Y.A., Kharitonova, E.P., and Khokhlov, A.R., Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications, Beilstein J. Nanotechnol., 2013, vol. 4, p. 481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Low, Z.-X., Budd, P.M., McKeown, N.B., and Patterson, D.A., Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers, Chem. Rev., 2018, vol. 118, p. 5871.

    Article  CAS  PubMed  Google Scholar 

  23. McKeown, N.B., The synthesis of polymers of intrinsic microporosity (PIMs), Sci. China Chem., 2017, vol. 60, p. 1023.

    Article  CAS  Google Scholar 

  24. Park, H.B., Kamcev, J., Robeson, L.M., Elimelech, M., and Freeman, B.D., Maximizing the right stuff: The trade-off between membrane permeability and selectivity, Science, 2017, vol. 356, p. eaab0530.

  25. Baker, R.W. and Low, B.T., Gas separation membrane materials: A perspective, Macromolecules, 2014, vol. 47, p. 6999.

    Article  CAS  Google Scholar 

  26. Bonso, J.S., Kalaw, G.D., and Ferrais, J.P., High surface area carbon nanofibers derived from electrospun PIM-1 for energy storage applications, J. Mater. Chem. A., 2014, vol. 2, p. 418.

    Article  CAS  Google Scholar 

  27. Ponomarev, I.I., Blagodatskikh, I.V., Muranov, A.V., Volkova, Y.A., Razorenov, D.Y., Ponomarev, Iv.I., and Skupov, K.M., Dimethyl sulfoxide as a green solvent for successful precipitative polyheterocyclization based on nucleophilic aromatic substitution, resulting in high molecular weight PIM-1, Mendeleev Commun., 2016., vol. 26, p. 326.

    Article  CAS  Google Scholar 

  28. Schmidt, T.J. and Baurmeister, J., Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode, J. Power Sources, 2008, vol. 176, p. 428.

    Article  CAS  Google Scholar 

  29. Volfkovich, Yu.M. and Sosenkin, V.E., Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics, Russ. Chem. Rev., 2012, vol. 81, p. 936.

    Article  CAS  Google Scholar 

  30. Volfkovich, Yu.M., Sosenkin, V.E., and Bagotsky, V.S., Structural and wetting properties of fuel cell components, J. Power Sources., 2010, vol. 195, p. 5429.

    Article  CAS  Google Scholar 

  31. Bukalov, S.S., Leites, L.A., Goloveshkin, A.S., Tyumentsev, V.A., and Fazlitdinova, A.G., Structure of sp 2-carbon fiber prepared by high-temperature thermomechanical treatment of polyacrylonitrile fiber: a Raman and X-Ray diffraction study, Russ. Chem. Bull., vol. 67, p. 1002.

  32. Bukalov, S.S., Zubavichus, Ya.V., Leites, L.A., Sorokin, A.I., and Kotosonov, A.S., Structural changes in industrial glassy carbon as a function of heat treatment temperature according to Raman spectroscopy and X-ray diffraction data, Nanosystems, Phys. Chem. Math., 2014, vol. 5, p. 186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Ponomarev.

Additional information

Translated by T. Safonova

Based on the paper presented at the XIV Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka (Russia), September 9–13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarev, I.I., Skupov, K.M., Ponomarev, I.I. et al. New Gas-Diffusion Electrode Based on Heterocyclic Microporous Polymer PIM-1 for High-Temperature Polymer Electrolyte Membrane Fuel Cell. Russ J Electrochem 55, 552–557 (2019). https://doi.org/10.1134/S1023193519060156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519060156

Keywords:

Navigation