Skip to main content
Log in

A Study of the Electro-Catalytic Oxidation of Methanol on a Ni-Functionalized Graphene Oxide/p-Type Conductive Polymer Modified Graphite Electrode: Experimental and Theoretical Approach

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The preparation of Ni-functionalized graphene oxide/poly orthoaminophenol composites (Ni–FGO–POAP) is presented and the composites were used as graphite electrode modifier for methanol electrooxidation in NaOH. Nickel was accumulated by complex formation between Ni(II), in solution and amines sites in the polymer backbone to obtain Ni–FGO–POAP/G electrode. The electrochemical performance of Ni–FGO–POAP composite electrodes was investigated by common electrochemical techniques. The peak on the potentiodynamic curve for Ni–FGO–POAP electrode in alkaline solutions of methanol is observed which is ascribed to the methanol oxidation in alkaline medium. Under the CA regimes the reaction followed a Cottrellian behavior. The results obtained are discussed from the point of view of employment of the Ni–FGO–POAP composites for the catalytic electrodes of fuel cells. In addition, the atoms-in-molecule (AIM) theory is used to study atomic-scale charge/energy transfer in grapheme-like molecular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sh, S. and Cs, L., Impedance characteristics of the directmethanol fuel cell under various operating conditions, Energy Fuels, 2008, vol. 22, pp. 1204–1211.

    Article  CAS  Google Scholar 

  2. Jarvi, T.D. and Stuve, E.M., Electrocatalysis, Lopkowski, J. and Ross, P.N., Eds., New York: Wiley-VCH, 1998, chapter 3.

  3. Golikand, A.N., Asgari, M., Maragheh, M.G., and Shahrokhian, S., Methanol electrooxidation on a nickel electrode modified by nickel-dimethylglyoxime complex formed by electrochemical synthesis, J. Electroanal. Chem., 2006, vol. 588, pp. 155–160.

    Article  CAS  Google Scholar 

  4. Cataldi, T.R.I., Centoze, D., and Ricciardi, G., Electrode modification with a poly (NiII-tetrameth-yldibenzotetraaza[14]annulene) film. Electrochemical behavior and redox catalysis in alkaline solutions, Electroanalysis, 1995, vol. 7, pp. 305–318.

    Article  CAS  Google Scholar 

  5. Tammam, R.H., Fekry, A.M., and Saleh, M.M., Electrocatalytic oxidation of methanol on ordered binary catalyst of manganese and nickel oxide nanoparticles, Int. J. Hydrogen Energy, 2015, vol. 40, pp. 275–283.

    Article  CAS  Google Scholar 

  6. Carvalho, L.L., Colmati, F., and Tanaka, A.A., Nickel-palladiumelectrocatalysts for methanol, ethanol and glycerol oxidation reactions, Int. J. Hydrogen Energy, 2017, vol. 42, pp. 16118–16126.

    Article  CAS  Google Scholar 

  7. Fiaccabrino, G.C. and Koudelka-Hep, M., Thin-film microfabrication of electrochemical transducers, Electroanalys, 1998, vol. 10, pp. 217–222.

    Article  CAS  Google Scholar 

  8. Liao, Y.Y. and Chou, T.C., An amperometric alcohol sensor by using electroless nickel as working electrode, Electroanalys, 2000, vol. 12, pp. 55–59.

    Article  CAS  Google Scholar 

  9. Gharibi, H., Zhiani, M., Mirzaie, RA., Kheirmand, M., Entezami, A.A., Kakaei, K., et al., Investigation of polyaniline impregnation on the performance of gas diffusion electrode (GDE) in PEMFC using binary of Nafion and polyaniline nanofiber, J. Power Sources, 2006, vol. 157, no. 2, p. 703e8.

    Article  CAS  Google Scholar 

  10. Shabani-Shayeh, J., Ehsani, A., Ganjali, M.R., Norouzi, P., and Jaleh, B., Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors, Appl. Surf. Sci., 2015, vol. 353, p. 594.

    Article  CAS  Google Scholar 

  11. Ehsani, A., Hadi, M., Kowsari, E., Doostikhahc, S., and Torabian, J., Electrocatalytic oxidation of ethanol on the surface of the POAP/phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film, Iran. J. Catal., 2017, vol. 7, pp. 187–192.

    CAS  Google Scholar 

  12. Ehsani, A., Influence of counter ions in electrochemical properties and kinetic parameters of poly tyramine electroactive film, Progr. Organic Coating, 2015, vol. 78, pp. 133–139.

    Article  CAS  Google Scholar 

  13. Ehsani, A., Kowsari, E., Boorboor Ajdari, F., Safari, R., and Mohammad Shiri, H., Influence of newly synthesized geminaldicationic ionic liquid on electrochemical and pseudocapacitance performance of conductive polymer electroactive film, J. Colloid Interf. Sci., 2017, vol. 505, pp. 1158–1164.

    Article  CAS  Google Scholar 

  14. Ehsani, A., Mohammad Shiri, H., Kowsari, E., Safari, R., ShabaniShayeh, J., and Barbary, M., Electrosynthesis, physioelectrochemical and theoretical investigation of poly ortho aminophenol/magnetic functional graphene oxide nanocomposites as novel and hybrid electrodes for highly capacitive pseudocapacitors, J. Colloid Interf. Sci., 2017, vol. 490, pp. 695–702.

    Article  CAS  Google Scholar 

  15. Naseri, M., Fotouhi, L., Ehsani, A., and Dehghanpour, S., Facile electrosynthesis ofnano flower like metal-organic framework and its nanocomposite with conjugated polymeras a novel and hybrid electrode material for highly capacitive pseudocapacitors, J. Colloid Interf. Sci., 2016, vol. 484, pp. 314–319.

    Article  CAS  Google Scholar 

  16. Ehsani, A., Shiri, M.H., Kowsari, E., Safari, R., Torabian, J., and Kazemi, S., Nanocomposite of p-type conductive polymer/functionalized graphene oxide nanosheets as novel and hybrid electrodes for highly capacitive pseudocapacitors, J. Colloid Interf. Sci., 2016, vol. 478, pp. 181–187.

    Article  CAS  Google Scholar 

  17. Shiri, H.M. and Ehsani, A., Pulse electrosynthesis of novel wormlike gadolinium oxide nanostructure and its nanocomposite with conjugated electroactive polymer as a hybrid and high efficient electrode material for energy storage device, J. Colloid Interf. Sci., 2016, vol. 484, pp. 70–76.

    Article  CAS  Google Scholar 

  18. Ehsani, A., Khodayari, J., Hadi, M., Mohammad Shiri, H., and Mostaanzadeh, H., Nanocomposite of p-type conductive polymer/Cu(II)-based metal-organic frameworks as a novel and hybrid electrode material for highly capacitive pseudocapacitors, Ionics, 2017, vol. 23, pp. 131–138.

    Article  CAS  Google Scholar 

  19. Shiri, H.M. and Ehsani, A., A simple and innovative route to electrosynthesis of Eu2O3 nanoparticles and its nanocomposite with p-type conductive polymer: characterization and electrochemical properties, J. Colloid Interf. Sci., 2016, vol. 473, pp. 126–131.

    Article  CAS  Google Scholar 

  20. Kowsari, E., Ehsani, A., Dashti Najafi, M., and Bigdeloo, M., Enhancement of pseudocapacitance performance of p-type conductive polymer in the presence of newly synthesized graphene oxide-hexamethylene tributylammonium iodide nanosheets, J. Colloid Interf. Sci., 2018, vol. 512, pp. 346–352.

    Article  CAS  Google Scholar 

  21. Wu, J.S., Pisula, W., and Mullen, K., Graphenes as potential material for electronics, Chem. Rev., 2007, vol. 107, pp. 718–747.

    Article  CAS  PubMed  Google Scholar 

  22. Yoo, E., Kim, J., Hosono, E., Zhou, H.S., Kudo, T., and Honma, L., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett., 2008, vol. 8, pp. 2277–2282.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, X., Zhi, L., and Mullen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett., 2008, vol. 8, pp. 323–327.

    Article  CAS  PubMed  Google Scholar 

  24. Xu, C., Liu, X., Cheng, J., and Scott, K., A polyben-zimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells, Power, Source, 2015, vol. 274, pp. 922–927.

    Article  CAS  Google Scholar 

  25. Kowsari, E., Zare, A., and Ansari, V., Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane, Int. J. Hydrog. Energy, 2015, vol. 40, pp. 13964–13978.

    Article  CAS  Google Scholar 

  26. Yang, Y., Diao, M., Gao, M., Sun, X., Liu, X., Zhang, G., Qi, Z., and Wang, S., Facile preparation of graphene/polyaniline composite and its application for electrocatalysis hexavalent chromium reduction, Electrochim. Acta, 2014, vol. 132, pp. 496–503.

    Article  CAS  Google Scholar 

  27. Ehsani, A., Vaziri-Rad, A., Babaei, F., and Mohammad Shiri, H., Electrosynthesis, optical modeling and electrocatalytic activity of Ni-MWCNT-PT nanocomposite film, Electrochim. Acta, 2015, vol. 159, pp. 140–148.

    Article  CAS  Google Scholar 

  28. Berchmans, S., Gomathi, H., and Prabhakara Rao, G., Electrooxidationof alcohols and sugars catalysed on a nickel oxide modified glassy carbon electrode, J. Electroanal. Chem., 1995, vol. 394, pp. 267–270.

    Article  Google Scholar 

  29. Fleischmann, M., Korinek, K., and Pletcher, D., The oxidation of organic compounds at a nickel anode in alkaline solution, J. Electroanal. Chem., 1971, vol. 31, pp. 39–49.

    Article  CAS  Google Scholar 

  30. Taraszewska, J. and Roslonek, G., Electrocatalytic oxidation of methanol on a glassy carbon electrode modified by nickel hydroxide formed by ex situ chemical precipitation, J. Electroanal. Chem., 1994, vol. 364, pp. 209–213.

    Article  CAS  Google Scholar 

  31. Bard, A.J. and Faulkner, L.R., Electrochemical Methods, New York: Wiley, 2001.

    Google Scholar 

  32. Harrison, J.A. and Khan, Z.A., The oxidation of hydrazine on platinum in acid solution, J. Electroanal. Chem., 1970, vol. 28, pp. 131–138.

    Article  CAS  Google Scholar 

  33. Bard, J.A. and Faulkner, L.R. Electrochemical Methods, Fundamentals and Applications, New York: Wiley, 2001, chap. 5, p. 209.

    Google Scholar 

  34. Ehsani, A., Mahjani, M.G., Bordbar, M., and Adeli, S.J., Electroanal. Chem., 2013, vol. 710, p. 29.

    Article  CAS  Google Scholar 

  35. Shiri, H.M., Ehsani, A., and Shabani Shayeh, J., Synthesis and highly efficient supercapacitor behavior of a novel poly pyrrole/ceramic oxide nanocomposite film, RSC Adv., 2015, vol. 110, pp. 91062–91068.

    Article  CAS  Google Scholar 

  36. Shiri, H.M. and Ehsani, A., Electrosynthesis of neodymium oxide nanorods and its nanocomposite with conjugated conductive polymer as a hybrid electrode material for highly capacitive pseudocapacitors, J. Collo. Interf. Sci., 2017, vol. 495, pp. 102–110.

    Article  CAS  Google Scholar 

  37. Shiri, H.M. and Ehsani, A., A novel and facile route for the electrosynthesis of Ho2O3 nanoparticles and its nanocomposite with p-type conductive polymer: characterisation and electrochemical performance, Bull. Chem. Soc. Jpn, 2016, vol. 89, pp. 1201–1206.

    Article  CAS  Google Scholar 

  38. Naseri, M., Fotouhi, L., Ehsani, A., and Shiri, H.M., Novel electroactive nanocomposite of POAP for highly efficient energy storage and electrocatalyst: electrosynthesis and electrochemical performance, J. Collo. Interf. Sci., 2016, vol. 484, pp. 308–311.

    Article  CAS  Google Scholar 

  39. Shiri, H.M., Ehsani, A., and Khales, M.J., Electrochemical synthesis of Sm2O3 nanoparticles: application in conductive polymer composite films for supercapacitors, J. Collo. Interf. Sci., 2017, vol. 505, pp. 940–946.

    Article  CAS  Google Scholar 

  40. Kowsari, E., Ehsani, A., Dashti Najafi, M., and Bigdeloo, M., Enhancement of pseudocapacitance performance of p-type conductive polymer in the presence of newly synthesized graphene oxide-hexamethylene tributylammonium iodide nanosheets, J. Colloid Interf. Sci., 2018, vol. 512, pp. 346–352.

    Article  CAS  Google Scholar 

  41. Matta, C.F. and Boyd, R.J., The Quantum Theory of Atoms in Molecules, Weinheim: Wiley, 2007.

    Book  Google Scholar 

  42. Matta, C.F. and Boyd, R.J., Quantum Biochemistry, Weinheim: Wiley, 2010.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Safari.

Additional information

Published in Russian in Elektrokhimiya, 2019, Vol. 55, No. 5, pp. 546–557.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, R., Ehsani, A., Torabian, J. et al. A Study of the Electro-Catalytic Oxidation of Methanol on a Ni-Functionalized Graphene Oxide/p-Type Conductive Polymer Modified Graphite Electrode: Experimental and Theoretical Approach. Russ J Electrochem 55, 381–391 (2019). https://doi.org/10.1134/S1023193519050112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519050112

Keywords

Navigation