Skip to main content
Log in

Removal of Organic Compounds Found in the Wastewater through Electrochemical Advanced Oxidation Processes: A Review

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Existence of an organic compounds, especially aromatic compounds in wastewater is observed as an emerging environmental problem because of their harmful effects on living organisms even at low concentration. Conventional wastewater treatment processes are ineffectual for an elimination of refractory organic compounds. Nowadays, it’s a challenge to reduce negative impact of such hazardous compounds on environment. So, Advanced Oxidation Processes (AOPs) have received more attention over a year of decades towards removal of an aromatic compounds. Among AOPs, Electrochemical Advanced Oxidation Processes (EAOPs), especially “Anodic Oxidation” and “Electro-Fenton,” have revealed good potential for mitigation of pollution caused by the presence of aqueous organic compounds in wastewater. This review has introduced an innovative collection of current knowledge on Electro-Fenton and Anodic oxidation type of processes. Fundamentals of these processes, electrolysers used, reaction mechanisms, experimental parameters affecting these electro-chemical treatment technologies with various applications are discussed in detail. This report also discusses effectiveness of EAOPs for elimination of organic compounds in aqueous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ma, L., Zhou, M., and Ren, G., A highly energy efficient flow-through electro-Fenton process for organic pollutants degradation, Electrochim. Acta, 2016, vol. 200, pp. 222–230.

    Article  CAS  Google Scholar 

  2. Wang, N., Zheng, T., and Zhang, G., A review on Fenton-like processes for organic wastewater treatment, J. Environ. Chem. Eng., 2016, vol. 4, pp. 762–787.

    Article  CAS  Google Scholar 

  3. Huang, X., Hou, X., and Zhao, J., Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span, Appl. Catal. B: Environ., 2016, vol. 181, pp. 127–137.

    Article  CAS  Google Scholar 

  4. Alexandre, C., Luis, M., and Baginska, E., Degradation of 5-FU by means of advanced (photo) oxidation processes: UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2-comparison of transformation products, ready biodegradability and toxicity, Sci. Total Environ., 2015, vol. 528, pp. 232–245.

    Google Scholar 

  5. Zhu, H., Shen, Z., and Tang, Q., Degradation mechanism study of organic pollutants in ozonation process by QSAR analysis, Chem. Eng. J., 2014, vol. 255, pp. 431–436.

    Article  CAS  Google Scholar 

  6. Chelme-ayala, P., Smith, D.W., and Adams, C.D., Oxidation kinetics of two pesticides in natural waters by ozonation and ozone combined with hydrogen peroxide, Water Res., 2011, vol. 5, pp. 2517–2526.

    Article  CAS  Google Scholar 

  7. Fontmorin, J. and Sillanpaa, M., Bioleaching and combined bioleaching/Fenton-like processes for the treatment of urban anaerobically digested sludge: removal of heavy metals and improvement of the sludge dewaterability, Sep. Purif. Technol., 2015, vol. 156, pp. 655–664.

    Article  CAS  Google Scholar 

  8. Wu, D., Chen, Y., and Zhang, Z., Enhanced oxidation of chloramphenicol by GLDA-driven pyrite induced heterogeneous Fenton-like reactions at alkaline condition, Chem. Eng. J., 2016, vol. 294, pp. 49–57.

    Article  CAS  Google Scholar 

  9. Kuznetsova, E.V., Savinov, E.N., and Vostrikova, L., Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2, Appl. Catal. B Environ., 2004, vol. 51, pp. 165–170.

    Article  CAS  Google Scholar 

  10. Gan, P.P. and Li, S.F.Y., Efficient removal of Rhodamine B using a a rice hull-based silica supported iron catalyst by Fenton-like process, Chem. Eng. J., 2013, vol. 229, pp. 351–363.

    Article  CAS  Google Scholar 

  11. He, Y., Huang, W., and Chen, R., Anodic oxidation of aspirin on PbO2, BDD and porous Ti/BDD electrodes: mechanism, kinetics and utilization rate, Sep. Purif. Technol., 2015, vol. 156, pp. 124–131.

    Article  CAS  Google Scholar 

  12. Zhang, C., Zhou, M., and Yu, X., Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition: characterization, degradation activity and stability, Electrochim. Acta, 2015, vol. 160, pp. 254–262.

    Article  CAS  Google Scholar 

  13. Trellu, C., Pechaud, Y., and Oturan, N., Comparative study on the removal of humic acids from drinking water by anodic oxidation and electro-Fenton processes: mineralization efficiency and modelling, Appl. Catal. B: Environ., 2016, vol. 194, pp. 32–41.

    Article  CAS  Google Scholar 

  14. Barbusinski, K., Controversy over Fenton mechanism, Ecol. Chem. Eng. S., 2009, vol. 16, pp. 347–358.

    CAS  Google Scholar 

  15. Zhou, M., Oturan, M.A., and Sires, I., Electro-Fenton Process: New Trends and Scale-Up, Springer Nature Singapure Pte Ltd., 2018, p. 430.

    Book  Google Scholar 

  16. Kolyagin, G.A. and Kornienko, V.L., The effect of carbon black mixture composition on the structural and electrochemical characteristics of gas diffusion electrodes for electrosynthesis of hydrogen peroxide, Russ. J. Electrochem., 2016, vol. 52, pp. 185–191.

    Article  CAS  Google Scholar 

  17. Kornienko, G.V., Kolyagin, G.A., Kornienko, V.L., and Parfenov, V.A., Graphitized carbon materials for electrosynthesis of H2O2 from O2 in gas-diffusion electrodes, Russ. J. Electrochem., 2016, vol. 52, pp. 983–987.

    Article  CAS  Google Scholar 

  18. Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., Chaenko, N.V., Kosheleva, A.M., Kenova, T.A., and Vasileva, I.S., Use of aqueous hydrogen peroxide solutions prepared by cathodic reduction of oxygen for indirect oxidation of chemical substances in situ: achievements and prospects, Russ. J. Appl. Chem., 2014, vol. 87, pp. 1–15.

    Article  CAS  Google Scholar 

  19. Kolyagin, G.A. and Kornienko, V.L., Electrosynthesis of hydrogen peroxide in solutions of salts that form molecular addition products (peroxo solvates) with it, Russ. J. Electrochem., 2014, vol. 50, pp. 798–803.

    Article  CAS  Google Scholar 

  20. Kolyagin, G.A., Kornienko, V.L., Kudenko, Y.A., Tikhomirov, A.A., and Trifonov, S.V., Electrosynthesis of hydrogen peroxide from oxygen in a gas-diffusion electrode in solutions of mineralized exometabolites, Russ. J. Electrochem., 2013, vol. 49, pp. 1004–1007.

    Article  CAS  Google Scholar 

  21. Kornienko, G.V., Chaenko, N.V., Maksimov, N.G., Kornienko, V.L., and Varnin, V.P., Electrochemical oxidation of phenol on boron-doped diamond electrode, Russ. J. Electrochem., 2011, vol. 47, pp. 225–229.

    Article  CAS  Google Scholar 

  22. Zeng, K. and Zhang, D., Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci., 2010, vol. 36, pp. 307–326.

    Article  CAS  Google Scholar 

  23. Van Der Merwe, J., Uren, K., Van Schoor, G., and Bessarabov, D., Characterisation tools development for PEM electrolysers, Int. J. Hydrogen Energy, 2014, vol. 39, pp. 14212–14221.

    Article  CAS  Google Scholar 

  24. Daneshpour, R. and Mehrpooya, M., Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production, Energy Convers. Manag., 2018, vol. 176, pp. 274–286.

    Article  CAS  Google Scholar 

  25. Mohammadi, A. and Mehrpooya, M., A comprehensive review on coupling different types of electrolyzer to renewable energy sources, Energy, 2018, vol. 158, pp. 632–655.

    Article  CAS  Google Scholar 

  26. Lin, M. and Haussener, S., Techno-economic modeling and optimization of solar-driven high-temperature electrolysis systems, Sol. Energy, 2017, vol. 155, pp. 1389–1402.

    Article  CAS  Google Scholar 

  27. Derbal-Mokrane, H., Benzaoui, A., Raoui, A., and Belhamel, M., Feasibility study for hydrogen production using hybrid solar power in Algeria, Int. J. Hydrogen Energy, 2011, vol. 36, pp. 4198–4207.

    Article  CAS  Google Scholar 

  28. Bilgen, E., Domestic hydrogen production using renewable energy, Sol. Energy, 2004, vol. 77, pp. 47–55.

    Article  CAS  Google Scholar 

  29. Yilmaz, C. and Kanoglu, M., Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis, Energy, 2014, vol. 69, pp. 592–602.

    Article  CAS  Google Scholar 

  30. Basha, C.A., Sendhil, J., Selvakumar, K.V., Muniswaran, P.K.A., and Lee, C.W., Electrochemical degradation of textile dyeing industry effluent in batch and flow reactor systems, Desalination, 2012, vol. 285, pp. 188–197.

    Article  CAS  Google Scholar 

  31. Gargouri, B., Gargouri, O.D., Gargouri, B., Trabelsi, S.K., Abdelhedi, R., and Bouaziz, M., Application of electrochemical technology for removing petroleum hydrocarbons from produced water using lead dioxide and boron-doped diamond electrodes, Chemosphere, 2014, vol. 117, pp. 309–315.

    Article  CAS  PubMed  Google Scholar 

  32. Martinez-Huitle, C.A., Dos Santos, E.V., De Araujo, D.M., and Panizza, M., Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent, J. Electroanal. Chem., 2012, vol. 674, pp. 103–107.

    Article  CAS  Google Scholar 

  33. Valero, D., Garcia-Garcia, V., Exposito, E., Aldaz, A., and Montiel, V., Electrochemical treatment of wastewater from almond industry using DSA-type anodes: direct connection to a PV generator, Sep. Purif. Technol., 2014, vol. 123, pp. 15–22.

    Article  CAS  Google Scholar 

  34. Dominguez, J.R., Gonzalez, T., Palo, P., Sanchez-Martin, J., Rodrigo, M.A., and Saez, C., Electrochemical degradation of a real pharmaceutical effluent, Water. Air. Soil Pollut., 2012, vol. 223, pp. 2685–2694.

    Article  CAS  Google Scholar 

  35. Isarain-Chavez, E., De La Rosa, C., Godinez, L.A., Brillas, E., and Peralta-Hernandez, J.M., Comparative study of electrochemical water treatment processes for a tannery wastewater effluent, J. Electroanal. Chem., 2014, vol. 713, pp. 62–69.

    Article  CAS  Google Scholar 

  36. Kim, D.G., Kim, W.Y., Yun, C.Y., Son, D.J., Chang, D., Bae, H.S., Lee, Y.H., Sunwoo, Y., and Hong, K., Agro-industrial wastewater treatment by electrolysis technology, Int. J. Electrochem. Sci., 2013, vol. 8, pp. 9835–9850.

    CAS  Google Scholar 

  37. Gajda, I., Stinchcombe, A., Greenman, J., Melhuish, C., and Ieropoulos, I., Microbial fuel cell–a novel self-powered wastewater electrolyser for electrocoagulation of heavy metals, Int. J. Hydrogen Energy, 2017, vol. 42, pp. 1813–1819.

    Article  CAS  Google Scholar 

  38. Zhang, Y., Gao, M., and Wang, X., Enhancement of oxygen diffusion process on a rotating disk electrode for the electro-Fenton degradation of tetracycline, Electrochim. Acta, 2015, vol. 182, pp. 73–80.

    Article  CAS  Google Scholar 

  39. Barhoumi, N., Oturan, N., and Olvera-vargas, H., Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine—kinetics, mechanism and toxicity assessment, Water Res., 2016, vol. 94, pp. 52–61.

    Article  CAS  PubMed  Google Scholar 

  40. Davarnejad, R. and Azizi, J., Alcoholic wastewater treatment using electro-Fenton technique modified by Fe2O3 nanoparticles, J. Environ. Chem. Eng., 2016, vol. 4, pp. 2342–2349.

    Article  CAS  Google Scholar 

  41. Gong, Y., Li, J., and Zhang, Y., Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode, J. Hazard. Mater., 2016, vol. 304, pp. 320–328.

    Article  CAS  PubMed  Google Scholar 

  42. Ganzenko, O., Oturan, N., and Huguenot, D., Removal of psychoactive pharmaceutical caffeine from water by electro-Fenton process using BDD anode: effects of operating parameters on removal efficiency, Sep. Purif. Technol., 2015, vol. 156, pp. 987–995.

    Article  CAS  Google Scholar 

  43. Petrucci, E., Pozzo, A.D., and Palma, L.D., On the ability to electrogenerate hydrogen peroxide and to regenerate ferrous ions of three selected carbon-based cathodes for electro-Fenton processes, Chem. Eng. J., 2016, vol. 283, pp. 750–758.

    Article  CAS  Google Scholar 

  44. Ozcan, A. and Gencten, M., Investigation of acid red 88 oxidation in water by means of electro-Fenton method for water purification, Chemosphere, 2016, vol. 146, pp. 245–252.

    Article  CAS  PubMed  Google Scholar 

  45. Sonmez, M., Oturan, N., and Zazou, H., Electrochemical oxidation of carbaryl on platinum and boron-doped diamond anodes using electro-Fenton technology, Sep. Purif. Technol., 2015, vol. 156, pp. 996–1002.

    Article  CAS  Google Scholar 

  46. Hou, B., Han, H., and Jia, S., Three-dimensional heterogeneous electro-Fenton oxidation of biologically pretreated coal gasification wastewater using sludge derived carbon as catalytic particle electrodes and catalyst, J. Taiwan Inst. Chem. Eng., 2016, vol. 60, pp. 352–360.

    Article  CAS  Google Scholar 

  47. Muna, S.Y., Oturan, N., and Kacemi, K.E., Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-fenton process: kinetics and oxidation products, Chemosphere, 2014, vol. 117, pp. 447–454.

    Article  CAS  Google Scholar 

  48. Colades, J.I., Daniel, M., and Luna, G.D., Treatment of thin film transistor-liquid crystal display (TFT-LCD) wastewater by the electro-Fenton process, Sep. Purif. Technol., 2015, vol. 145, pp. 104–112.

    Article  CAS  Google Scholar 

  49. Ammar, S., Oturan, M.A., and Labiadh, L., Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst, Water Res., 2015, vol. 74, pp. 77–87.

    Article  CAS  PubMed  Google Scholar 

  50. Xuan, T., Le, H., and Charmette, C., Facile preparation of porous carbon cathode to eliminate paracetamol in aqueous medium using electro-Fenton system, Electrochim. Acta, 2016, vol. 188, pp. 378–384.

    Article  CAS  Google Scholar 

  51. Hou, B., Han, H., and Jia, S., Heterogeneous electro-Fenton oxidation of catechol catalyzed by nano-Fe3O4: kinetics with the Fermi’s equation, J. Taiwan Inst. Chem. Eng., 2015, vol. 56, pp. 138–147.

    Article  CAS  Google Scholar 

  52. Xu, A., Han, W., and Li, J., Electrogeneration of hydrogen peroxide using Ti/IrO2–Ta2O5 anode in dual tubular membranes electro-Fenton reactor for the degradation of tricyclazole without aeration, Chem. Eng. J., 2016, vol. 295, pp. 152–159.

    Article  CAS  Google Scholar 

  53. Ren, G., Zhou, M., and Liu, M., A novel vertical-flow electro-Fenton reactor for organic wastewater treatment, Chem. Eng. J., 2016, vol. 298, pp. 55–67.

    Article  CAS  Google Scholar 

  54. Tzedakis, T. and Assouan, Y., One-flow feed divided electrochemical reactor for indirect electrolytic production of hypochlorite from brine for swimming pool treatment-experimental and theoretical optimization, Chem. Eng. J., 2014, vol. 253, pp. 427–437.

    Article  CAS  Google Scholar 

  55. Lin, H., Zhang, H., and Wang, X., Electro-Fenton removal of Orange II in a divided cell: reaction mechanism, degradation pathway and toxicity evolution, Sep. Purif. Technol., 2014, vol. 122, pp. 533–540.

    Article  CAS  Google Scholar 

  56. El-ghenymy, A., Centellas, F., and Garrido, J.A., Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors, Electrochim. Acta, 2014, vol. 130, pp. 568–576.

    Article  CAS  Google Scholar 

  57. Meijide, J. and Pazos, M., Degradation of thiamethoxam by the synergistic effect between anodic oxidation and Fenton reactions, J. Hazard. Mater., 2016, vol. 319, pp. 43–50.

    Article  CAS  PubMed  Google Scholar 

  58. Moreira, F.C., Garcia-segura, S., and Brillas, E., Decolorization and mineralization of Sunset Yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes, Appl. Catal. B: Environ., 2013, vol. 143, pp. 877–890.

    Article  CAS  Google Scholar 

  59. Bedolla-guzman, A., Sires, I., and Thiam, A., Application of anodic oxidation, electro-Fenton and UVA photoelectro-Fenton to decolorize and mineralize acidic solutions of Reactive Yellow 160 azo dye, Electrochim. Acta, 2016, vol. 206, pp. 307–316.

    Article  CAS  Google Scholar 

  60. Maryam, A., Maziyar, M.P., and Hassan, F.J., Treatment of petrochemical wastewater by modified electro-fenton method with nano-porous aluminum electrode, J. Water. Environ. Nanotechnol., 2017, vol. 2, pp. 186–194.

    Google Scholar 

  61. Baolin, H., Bozhi, R., and Renjian, D., Three-dimensional electro-Fenton oxidation of N-heterocyclic compounds with a novel catalytic particle electrode: high activity, wide pH range and catalytic mechanism, RSC Adv., 2017, vol. 7, pp. 154–155.

    Google Scholar 

  62. Hicham, Z., Oturan, N., and Sonmez-Celebi, M., Mineralization of chlorobenzene in aqueous medium by anodic oxidation and electro-Fenton processes using Pt or BDD anode and carbon felt cathode, J. Electroanal. Chem., 2016, vol. 774, pp. 22–30.

    Article  CAS  Google Scholar 

  63. Florenza, X., Maria, A., and Solano, S., Degradation of the azo dye Acid Red-1 by anodic oxidation and indirect electrochemical processes based on Fenton’s reaction chemistry: relationship between decolorization, mineralization and products, Electrochim. Acta, 2014, vol. 142, pp. 276–288.

    Article  CAS  Google Scholar 

  64. Zhang, Q., Hua, Y., and Wang, R., Anodic oxidation of chloride ions in 1-butyl-3-methyl-limidazolium tetrafluoroborate ionic liquid, Electrochim. Acta, 2013, vol. 105, pp. 419–423.

    Article  CAS  Google Scholar 

  65. Fernandes, A., Santos, D., and Pacheco, M.J., Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2–Sb2O4 and Si/BDD, Appl. Catal. B: Environ., 2014, vol. 149, pp. 288–294.

    Article  CAS  Google Scholar 

  66. De Rosa-ju, C., Peralta-hern, J.M., and Rodrigo-rodrigo, M.A., Synergism between anodic oxidation with diamond anodes and heterogeneous catalytic photolysis for the treatment of pharmaceutical pollutants, Sustain. Environ. Res., 2016, vol. 26, pp. 70–75.

    Article  CAS  Google Scholar 

  67. Giraldo, A.L., Erazo-erazo, E.D., and Florez-acosta, O.A., Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti/IrO2 anodes: evaluation of degradation routes, organic by-products and effects of water matrix components, Chem. Eng. J., 2015, vol. 279, pp. 103–114.

    Article  CAS  Google Scholar 

  68. Vale-junior, E., Dosta, S., and Garcia, I., Acid blue 29 decolorization and mineralization by anodic oxidation with a cold gas spray synthesized Sn–Cu–Sb alloy anode, Chemosphere, 2016, vol. 148, pp. 47–54.

    Article  CAS  PubMed  Google Scholar 

  69. Chen, H., Zhang, Z., and Yang, Z., Heterogeneous Fenton-like catalytic degradation of 2, 4-dichlorophenoxyacetic acid in water with FeS, Chem. Eng. J., 2015, vol. 273, pp. 481–489.

    Article  CAS  Google Scholar 

  70. Golub, T. and Becker, J.Y., The effect of ring-size on the anodic oxidation of cyclic amides in methanol, Electrochim. Acta, 2016, vol. 205, pp. 207–214.

    Article  CAS  Google Scholar 

  71. Florenza, X., Maria, A., and Solano, S., Degradation of the azo dye Acid Red-1 by anodic oxidation and indirect electrochemical processes based on Fenton’s reaction chemistry; relationship between decolorization, mineralization and products, Electrochim. Acta, 2014, vol. 142, pp. 276–288.

    Article  CAS  Google Scholar 

  72. Akrout, H., Jellali, S., and Bousselmi, L., Enhancement of methylene blue removal by anodic oxidation using BDD electrode combined with adsorption onto sawdust, C. R. Chim., 2015, vol. 18, pp. 110–120.

    Article  CAS  Google Scholar 

  73. Rabaaoui, N., Moussaoui, Y., and Salah, M., Anodic oxidation of nitrobenzene on BDD electrode: variable effects and mechanisms of degradation, Sep. Purif. Technol., 2013, vol. 107, pp. 318–323.

    Article  CAS  Google Scholar 

  74. Xu, L., Guo, Z., and Du, L., Decolourization and degradation of C. I. Acid Red 73 by anodic oxidation and the synergy technology of anodic oxidation coupling nanofiltration, Electrochim. Acta, 2013, vol. 97, pp. 150–159.

    Article  CAS  Google Scholar 

  75. Chu, Y., Wang, W., and Wang, M., Anodic oxidation process for the degradation of 2,4-dichlorophenol in aqueous solution and the enhancement of biodegradability, J. Hazard. Mater., 2010, vol. 180, pp. 247–252.

    Article  CAS  PubMed  Google Scholar 

  76. Lizhang, W., Shengxiang, Y., and Bo, W., The influence of anode materials on the kinetics toward electrochemical oxidation of phenol, Electrochim. Acta, 2016, vol. 206, pp. 270–277.

    Article  CAS  Google Scholar 

  77. Chen, Y., Li, H., and Liu, W., Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2–NTs/SnO2–Sb/PbO2 electrode, Chemosphere, 2014, vol. 113, pp. 48–55.

    Article  CAS  PubMed  Google Scholar 

  78. Pleskov, Y.V., Electrochemistry of diamond: a review, Russ. J. Electrochem., 2002, vol. 38, pp. 1275–1291.

    Article  CAS  Google Scholar 

  79. Pleskov, Yu.V., Evstefeeva, Yu.E., Krotova, M.D., Mishuk, V.Ya., Laptev, V.A., Palyanov, Yu.N., and Borzdov, Yu.M., Synthetic semiconductor diamond electrodes: electrochemical characteristics of individual faces of high-temperature-high-pressure single crystals, Russ. J. Electrochem., 2002, vol. 38, pp. 620–625.

    Article  CAS  Google Scholar 

  80. Pleskov, Y.V., Evstefeeva, Y.E., Varnin, V.P., and Teremetskaya, I.G., Synthetic semiconductor diamond electrodes: electrochemical characteristics of homoepitaxial boron-doped films grown at the (111), (110) and (100) faces of diamond crystals, Russ. J. Electrochem., 2004, vol. 40, pp. 886–892.

    Article  CAS  Google Scholar 

  81. Pleskov, Yu.V., Evstefeeva, Yu.E., Krotova, M.D., Lim, P.Y., Chu, S.S., Ral’chenko, V.G., Vlasov, I.I., Kononenko, V.V., Varnin, V.P., Teremetskaya, I.G., and Shi, H.C., Electrodes of synthetic diamond: the effects of Ti substrate pretreatment on the electrode properties, Russ. J. Electrochem., 2005, vol. 41, pp. 337–345.

    Article  CAS  Google Scholar 

  82. Pleskov, Yu.V., Krotova, M.D., Ralchenko, V.G., Saveliev, A.V., and Bozhko, A.D., Electrochemical behavior of nitrogenated nanocrystalline diamond electrodes, Russ. J. Electrochem., 2007, vol. 43, pp. 827–836.

    Article  CAS  Google Scholar 

  83. Pleskov, Yu.V., Krotova, M.D., Elkin, V.V., and Ekimov, E.A., Electrochemical behavior of new electrode material: compact of boron-doped synthetic diamond, Russ. J. Electrochem., 2016, vol. 52, pp. 1–6.

    Article  CAS  Google Scholar 

  84. Dai, Y., Denis, A.P., and Swain, G.M., Effects of film morphology and surface chemistry on the direct electrochemistry of cytochrome c at boron-doped diamond electrodes, Electrochim. Acta, 2017, vol. 4, pp. 129–138.

    Google Scholar 

  85. Zhao, H., Bian, X., Galligan, J.J., and Swain, G.M., Electrochemical measurements of serotonin (5-HT) release from the guinea pig mucosa using continuous amperometry with a boron-doped diamond microelectrode, Diam. Relat. Mater., 2010, vol. 19, pp. 182–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kapałka, A., Joss, L., Anglada, A., Comninellis, C., and Udert, K.M., Direct and mediated electrochemical oxidation of ammonia on boron-doped diamond electrode, Electrochem. Commun., 2010, vol. 12, pp. 1714–1717.

    Article  CAS  Google Scholar 

  87. He, S., Huang, Q., Zhang, Y., Wang, L., and Nie, Y., Investigation on direct and indirect electrochemical oxidation of ammonia over Ru–Ir/TiO2 anode, Ind. Eng. Chem. Res., 2015, vol. 54, pp. 1447–1451.

    Article  CAS  Google Scholar 

  88. Bounab, L., Iglesias, O., and Pazos, M., Effective monitoring of the electro-Fenton degradation of phenolic derivatives by differential pulse voltammetry on multi-walled-carbon nanotubes modified screen-printed carbon electrodes, Appl. Catal. B: Environ., 2016, vol. 180, pp. 544–550.

    Article  CAS  Google Scholar 

  89. Garcia-rodriguez, O., Banuelos, J.A., and El-ghenymy, A., Use of a carbon felt-iron oxide air-diffusion cathode for the mineralization of Malachite Green dye by heterogeneous electro-Fenton and UVA photoelectro-Fenton processes, J. Electroanal. Chem., 2016, vol. 767, pp. 40–48.

    Article  CAS  Google Scholar 

  90. Davarnejad, R., Mohammadi, M., and Fauzi, A., Petrochemical wastewater treatment by electro-Fenton process using aluminum and iron electrodes: statistical comparison, J. Water Process. Eng., 2014, vol. 3, pp. 18–25.

    Article  Google Scholar 

  91. Marco, J.F. and Escalona, N., Preparation and characterization of bimetallic Fe–Cu allophane nanoclays and their activity in the phenol oxidation by heterogeneous electro-Fenton reaction, Microporous Mesoporous Mater., 2016, vol. 225, pp. 303–311.

    Article  CAS  Google Scholar 

  92. Song, S., Wu, M., and Liu, Y., Efficient and stable carbon-coated nickel foam cathodes for the electro-Fenton process, Electrochim. Acta, 2015, vol. 176, pp. 811–818.

    Article  CAS  Google Scholar 

  93. Wang, Y., Liu, Y., and Wang, K., Preparation and characterization of a novel KOH activated graphite felt cathode for the electro-Fenton process, Appl. Catal. B: Environ., 2015, vol. 165, pp. 360–368.

    Article  CAS  Google Scholar 

  94. Yuan, S., Gou, N., and Alshawabkeh, A.N., Efficient degradation of contaminants of emerging concerns by a new electro-Fenton process with Ti/MMO cathode, Chemosphere, 2013, vol. 93, pp. 2796–2804.

    Article  CAS  PubMed  Google Scholar 

  95. Xia, G., Lu, Y., and Xu, H., An energy-saving production of hydrogen peroxide via oxygen reduction for electro-Fenton using electrochemically modified polyacrylonitrile-based carbon fiber brush cathode, Sep. Purif. Technol., 2015, vol. 156, pp. 553–560.

    Article  CAS  Google Scholar 

  96. Paramo-vargas, J., Estrada, A.M., and Gutierrez-granados, S., Applying electro-Fenton process as an alternative to a slaughterhouse effluent treatment, J. Electroanal. Chem., 2015, vol. 754, pp. 80–86.

    Article  CAS  Google Scholar 

  97. Nouha, B.T., Hanife, S.E., and Guleda, O.E., The investigation of shale gas wastewater treatment by electro-Fenton process: statistical optimization of operational parameters, Process. Saf. Environ. Prot., 2017, vol. 109, pp. 203–213.

    Article  CAS  Google Scholar 

  98. Bedolla-guzman, A., Sires, I., and Thiam, A., Application of anodic oxidation, electro-Fenton and UVA photoelectro-Fenton to decolorize and mineralize acidic solutions of Reactive Yellow 160 azo dye, Electrochim. Acta, 2016, vol. 206, pp. 307–316.

    Article  CAS  Google Scholar 

  99. Meijide, J. and Pazos, M., Degradation of thiamethoxam by the synergistic effect between anodic oxidation and Fenton reactions, J. Hazard. Mater., 2016, vol. 319, pp. 43–50.

    Article  CAS  PubMed  Google Scholar 

  100. De Rosa-ju, C., Peralta-hern, J.M., and Rodrigo-rodrigo, M.A., Synergism between anodic oxidation with diamond anodes and heterogeneous catalytic photolysis for the treatment of pharmaceutical pollutants, Sustain. Environ. Res., 2016, vol. 26, pp. 70–75.

    Article  CAS  Google Scholar 

  101. Hicham, Z., Oturan, N., and Sonmez-Celebi, M., Mineralization of chlorobenzene in aqueous medium by anodic oxidation and electro-Fenton processes using Pt or BDD anode and carbon felt cathode, J. Electroanal. Chem., 2016, vol. 774, pp. 22–30.

    Article  CAS  Google Scholar 

  102. Pillai, I.M.S. and Gupta, A.K., Anodic oxidation of coke oven wastewater: multiparameter optimization for simultaneous removal of cyanide, COD and phenol, J. Environ. Manag., 2016, vol. 176, pp. 45–53.

    Article  CAS  Google Scholar 

  103. Zhao, Z., Zhang, Y., and Yu, Q., Enhanced decomposition of waste activated sludge via anodic oxidation for methane production and bioenergy recovery, Int. Biodeterior. Biodegradation., 2016, vol. 106, pp. 161–169.

    Article  CAS  Google Scholar 

  104. Giraldo, A.L., Erazo-erazo, E.D., and Florez-acosta, O.A., Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti/IrO2 anodes: evaluation of degradation routes, organic by-products and effects of water matrix components, Chem. Eng. J., 2015, vol. 279, pp. 103–114.

    Article  CAS  Google Scholar 

  105. Garcia-segura, S., Silva, A., and Bezerra, E., Anodic oxidation, electro-Fenton and photoelectro-Fenton degradations of pyridinium- and imidazolium-based ionic liquids in waters using a BDD/air-diffusion cell, Electrochim Acta, 2016, vol. 198, pp. 268–279.

    Article  CAS  Google Scholar 

  106. Chen, L., Campo, P., and Kupferle, M.J., Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride, J. Hazard. Mater., 2015, vol. 283, pp. 574–581.

    Article  CAS  PubMed  Google Scholar 

  107. El-ghenymy, A., Centellas, F., and Garrido, J.A., Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors, Electrochim. Acta, 2014, vol. 130, pp. 568–576.

    Article  CAS  Google Scholar 

  108. Moreira, F.C., Garcia-segura, S., and Brillas, E., Decolorization and mineralization of Sunset Yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes, Appl. Catal. B: Environ., 2013, vol. 143, pp. 877–890.

    Article  CAS  Google Scholar 

  109. Rabaaoui, N., Mohamed, M., and Saad, K., Anodic oxidation of o-nitrophenol on BDD electrode: variable effects and mechanisms of degradation, J. Hazard. Mater., 2013, vol. 251, pp. 447–453.

    Article  CAS  Google Scholar 

  110. Garcia-Seguraa, S., Keller, J., Brillas, E., and Radjenovic, J., Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment, J. Hazard. Mater., 2015, vol. 283, pp. 551–557.

    Article  CAS  Google Scholar 

  111. Pillai, I.M.S. and Gupta, A.K., Batch and continuous flow anodic oxidation of 2,4-dinitrophenol: modeling, degradation pathway and toxicity, J. Electroanal. Chem., 2015, vol. 756, pp. 108–117.

    Article  CAS  Google Scholar 

  112. Ammar, S., Oturan, M.A., and Labiadh, L., Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst, Water Res., 2015, vol. 74, pp. 77–87.

    Article  CAS  PubMed  Google Scholar 

  113. Xuan, T., Le, H., and Charmette, C., Facile preparation of porous carbon cathode to eliminate paracetamol in aqueous medium using electro-Fenton system, Electrochim. Acta, 2016, vol. 188, pp. 378–384.

    Article  CAS  Google Scholar 

  114. Labiadh, L., Oturan, M.A., and Panizza, M., Complete removal of AHPS synthetic dye from water using new electro-Fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst, J. Hazard. Mater., 2015, vol. 297, pp. 34–41.

    Article  CAS  PubMed  Google Scholar 

  115. Hou, B., Han, H., and Jia, S., Heterogeneous electro-Fenton oxidation of catechol catalyzed by nano-Fe3O4: kinetics with the Fermi’s equation. J. Taiwan Inst. Chem. Eng., 2015, vol. 56, pp. 138–147.

    Article  CAS  Google Scholar 

  116. Iglesias, O., Tavares, T., and Sanroman, M.A., Heterogeneous electro-Fenton treatment: preparation, characterization and performance in groundwater pesticide removal, Ind. Eng. Chem. Res., 2015, vol. 27, pp. 276–282.

    Article  CAS  Google Scholar 

  117. Maria, A., Solano, S., and Cristina, I., Application of electro-Fenton process as alternative for degradation of Novacron Blue dye, J. Environ. Chem. Eng., 2014, vol. 2, pp. 875–880.

    Article  CAS  Google Scholar 

  118. Su, C., Chang, A., and Bellotindos, L.M., Degradation of acetaminophen by Fenton and electro-Fenton processes in aerator reactor, Sep. Purif. Technol., 2012, vol. 99, pp. 8–13.

    Article  CAS  Google Scholar 

  119. Wang, Y., Zhao, H., and Chai, S., Electrosorption enhanced electro-Fenton process for efficient mineralization of imidacloprid based on mixed-valence iron oxide composite cathode at neutral pH, Chem. Eng. J., 2015, vol. 223, pp. 524–535.

    Article  CAS  Google Scholar 

  120. Rodriguez, M.L., Timokhin, V.I., and Contreras, S., Rate equation for the degradation of nitrobenzene by Fenton-like reagent, Adv. Environ. Res., 2003, vol. 7, pp. 583–595.

    Article  CAS  Google Scholar 

  121. Buxton, G.V., Greenstock, C.L., and Helman, W.P., Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution, J. Phys. Chem. Ref. Data, 1986, vol. 17, p. 513.

    Article  Google Scholar 

  122. Nidheesh, P.V. and Gandhimathi, R., Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 2012, vol. 299, pp. 1–15.

    Article  CAS  Google Scholar 

  123. David, C., Arivazhagan, M., and Tuvakara, F., Decolorization of distillery spent wash effluent by electro-oxidation (EC and EF) and Fenton processes: a comparative study, Ecotoxicol. Environ. Saf., 2015, vol. 121, pp. 142–148.

    Article  CAS  PubMed  Google Scholar 

  124. Maria, A., Solano, S., and Garcia-segura, S., Degradation of acidic aqueous solutions of the diazo dye Congo Red by photo-assisted electro-chemical processes based on Fenton’s reaction chemistry, Appl. Catal. B Environ., 2015, vol. 168, pp. 559–571.

    Google Scholar 

  125. Thirugnanasambandham, K. and Sivakumar, V., Optimization of treatment of grey wastewater using electro-Fenton technique – modeling and validation, Process Saf. Environ. Prot., 2015, vol. 95, pp. 60–68.

    Article  CAS  Google Scholar 

  126. Zhang, C., Zhou, M., and Ren, G., Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway, Water Res., 2014, vol. 70, pp. 414–424.

    Article  CAS  PubMed  Google Scholar 

  127. Seyyedali, M., Behnoush, A., and Ali, T., Optimizing electro-coagulation and electro-Fenton process for treating car wash wastewater, Environ. Health Eng. Manage. J., 2017, vol. 4, pp. 37–43.

    Google Scholar 

  128. Ghosh, P., Samanta, A.N., and Ray, S., Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation, Desalination, 2011, vol. 266, pp. 213–217.

    Article  CAS  Google Scholar 

  129. Lai, B., Zhou, Y., and Wang, J., Application of excitation and emission matrix fluorescence (EEM) and UV-vis absorption to monitor the characteristics of Alizarin Red S (ARS) during electro-Fenton degradation process, Chemosphere, 2013, vol. 93, pp. 2805–2813.

    Article  CAS  PubMed  Google Scholar 

  130. Kourdali, S., Badis, A., and Boucherit, A., Degradation of direct yellow 9 by electro-Fenton: process study and optimization and monitoring of treated water toxicity using catalase, Ecotoxicol. Environ. Saf., 2014, vol. 110, pp. 110–120.

    Article  CAS  PubMed  Google Scholar 

  131. El-ghenymy, A., Centellas, F., and Rodriguez, R.M., Comparative use of anodic oxidation, electro-Fenton and photoelectro-Fenton with Pt or boron-doped diamond anode to decolorize and mineralize Malachite Green oxalate dye, Electrochim. Acta, 2015, vol. 182, pp. 247–256.

    Article  CAS  Google Scholar 

  132. Mohammad, M. and Alireza, M., Efficiency of electro-Fenton process in removing Acid Red 18 dye from aqueous solutions, Process Saf. Environ. Prot., 2017, vol. 111, pp. 138–147.

    Article  CAS  Google Scholar 

  133. Amanjit, S., Anoop, V., and Palak, B., Evaluation of the process parameters for electro-Fenton and electro-chlorination treatment of reactive black 5 (RB5) dye, J. Electrochem. Soc., 2017, vol. 164, pp. 203–212.

    Google Scholar 

  134. Mousavi, A., Mokhtari, M., and Khashij, M., Evaluating Fenton process efficiency in removal of reactive red 2 from aqueous solution, J. Environ. Health Sustain. Dev., 2017, vol. 2, pp. 292–299.

    CAS  Google Scholar 

  135. Malak, M. and Nizar, B., Treatment of a Tunisian textile effluent containing Bromothymol Blue dye using anodic oxidation on boron doped diamond electrode, J. Tunisian Chem. Soc., 2017, vol. 19, pp. 32–42.

    Google Scholar 

  136. Ghosh, P., Thakur, L.K., Samanta, A.N., and Ray, S., Electro-Fenton treatment of synthetic organic dyes: influence of operational parameters and kinetic study, Korean J. Chem. Eng., 2012, vol. 29, pp. 1203–1210.

    Article  CAS  Google Scholar 

  137. Ghime, D., Kumar, V., and Ghosh, P., Electrochemical oxidation of diazo dye Trypan Blue in aqueous medium: influence of experimental parameters and kinetic study, Proc. 1st Int. Conf. on New Frontiers in Engineering, Science & Technology (NFEST-2018), Delhi Technological Univ., Jan. 8–12, 2018.

  138. Meijide, J., Rosales, E., and Pazos, M., p-Nitrophenol degradation by electro-Fenton process: pathway, kinetic model and optimization using central composite design, Chemosphere, 2017, vol. 185, pp. 726–736.

    Article  CAS  PubMed  Google Scholar 

  139. Bahadir, K.K. and Pelin, D., Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode: reaction kinetics and process optimization with response surface methodology, Front. Chem., 2017, vol. 5, pp. 75–89.

    Article  CAS  Google Scholar 

  140. Hongna, L., Yujiao, L., and Xiuping, Z., Influencing factors and chlorinated byproducts in electrochemical oxidation of bisphenol A with boron-doped diamond anodes, Electrochim. Acta, 2017, vol. 246, pp. 1121–1130.

    Article  CAS  Google Scholar 

  141. Sarah, B., Souad, B., and Malika, C., Study of oxytetracycline degradation by means of anodic oxidation process using platinized titanium (Ti/Pt) anode and modeling by artificial neural networks, Process Saf. Environ. Prot., 2017, vol. 111, pp. 170–179.

    Article  CAS  Google Scholar 

  142. Pape, A.D., Nihal, O., and Mame, D.G.S., Oxidative degradation and mineralization of the phenylurea herbicide fluometuron in aqueous media by the electro-Fenton process, Sep. Purif. Technol., 2017, vol. 186, pp. 197–206.

    Article  CAS  Google Scholar 

  143. Nejmeddine, R., Sabrine, B.K., and Mohamed El, K.S., Anodic oxidation of chlorinated pesticides on BDD and PBO2 electrodes: kinetics, influential factors and mechanism determination, Mod. Chem. Appl., 2017, vol. 5, pp. 234–242.

    Google Scholar 

  144. Mukherjee, P., Bagchi, J., and Dutta, S., The nickel supported platinum catalyst for anodic oxidation of ethanol in alkaline medium, Appl. Catal. A Gen., 2015, vol. 506, pp. 220–227.

    Article  CAS  Google Scholar 

  145. Olvera-vargas, H., Oturan, N., and Oturan, M.A., Electro-Fenton and solar photoelectro-Fenton treatments of the pharmaceutical ranitidine in pre-pilot flow plant scale, Sep. Purif. Technol., 2015, vol. 146, pp. 127–135.

    Article  CAS  Google Scholar 

  146. Lei, Y., Liu, H., and Shen, Z., Development of a trickle bed reactor of electro-Fenton process for wastewater treatment, J. Hazard. Mater., 2013, vol. 261, pp. 570–576.

    Article  CAS  PubMed  Google Scholar 

  147. Krengvirat, W., Sreekantan, S., and Noor, A.M., Carbon-incorporated TiO2 photoelectrodes prepared via rapid-anodic oxidation for efficient visible-light hydrogen generation, Int. J. Hydrog. Energy, 2012, vol. 37, pp. 10046–10056.

    Article  CAS  Google Scholar 

  148. Rui, Z., Chen, C., and Lu, Y., Anodic alumina supported Pt catalyst for total oxidation of trace toluene, Chin. J. Chem. Eng., 2014, vol. 22, pp. 882–887.

    Article  CAS  Google Scholar 

  149. Teng, C.C., Ten-En, C., and Ming-Chun, L., Removal of COD from TFT-LCD wastewater by electro-Fenton technology using a tubular reactor, J. Environ. Eng., 2017, vol. 143, pp. 4017–4018.

    Google Scholar 

  150. Annabel, F., Lazhar, L., and Lurdes, C., Electro-Fenton oxidation of reverse osmosis concentrate from sanitary landfill leachate: evaluation of operational parameters, Chemosphere, 2017, vol. 184, pp. 1223–1229.

    Article  CAS  Google Scholar 

Download references

FUNDING

The authors are thankful to the Head of Department and the faculty of National Institute of Technology (NIT), Raipur (Department of Chemical Engineering) who financially supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Ghosh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damodhar Ghime, Prabir Ghosh Removal of Organic Compounds Found in the Wastewater through Electrochemical Advanced Oxidation Processes: A Review. Russ J Electrochem 55, 591–620 (2019). https://doi.org/10.1134/S1023193519050057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519050057

Keywords:

Navigation