Skip to main content
Log in

Synthesis, Characterization, in vitro Antifungal Activities and Calf Thymus DNA Interactions of Two Different Hydroxy Benzaldehyde Derivative Schiff Bases from Sulfamethizole: Electrochemical, Spectroscopic and Biological Study

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, the Schiff bases were synthesized by reacting sulfamethizole (SMTZ) with two different hydroxy benzaldehydes (2,3-dihydroxy benzaldehyde (DHBA) and 2,4,6-trihydroxy benzaldehyde (THBA)) and characterized by elemental analysis, 1H-NMR and IR spectroscopies. From the obtained data, it was suggested that 4,6-dihydroxy salicylaldehyde reacted with both primary and secondary amine groups of SMTZ. The binding properties between the synthesized Schiff bases and calf thymus DNA (CT-DNA) at the physiological pH (7.4) was investigated by using cyclic voltammetry and UV-Vis spectroscopy techniques. The experimental results verify that the Schiff bases can bind to CT-DNA by electrostatic mode in 1 : 1 stoichiometry. Antifungal activities of the synthesized Schiff bases against Candida albicans ATCC 10231 were studied and their minimum inhibitory concentrations (MIC) were also determined. The MIC value of the Schiff base 1 synthesized from DHBA is smaller than that of the Schiff base 2 obtained from THBA. Although Schiff base 2 binds to CT-DNA with a higher affinity than Schiff base 1, it is less effective than Schiff base 1 against Candida albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan, F., Khan, S., Athar, A., Ahmed, W., Zia-ul-Haq, and Khan, Z., Synthesis, spectral characterization and antibacterial study of a Schiff base metal complexes derived from N-[(E)-(5-chloro-2-hydroxyphenyl)methylidene]-4-nitrobenzenesulfonamide, Amer.- Eur. J. Agric. Environ. Sci., 2015, vol. 15, p. 216.

    CAS  Google Scholar 

  2. Kumar, G., Kumar, D., Singh, C.P., Kumar, A., and Rana, V.B., Synthesis, physical characterization and antimicrobial activity of trivalent metal Schiff base complexes, J. Serb. Chem. Soc., 2010, vol. 75, p. 629.

    Article  CAS  Google Scholar 

  3. Xiao, Y.-J., Diao, Q.-C., Liang, Y.-H., and Zeng, K., Two novel Co(II) complexes with two different Schiff bases: inhibiting growth of human skin cancer cells, Braz. J. Med. Biol. Res., 2017, vol. 50, p. e6390.

    PubMed  PubMed Central  Google Scholar 

  4. Han, R., Sun, Y., Kang, C., Sun, H., and Wei, W., Amphiphilic dendritic nanomicelle-mediated co-delivery of 5-fluorouracil and doxorubicin for enhanced therapeutic efficacy, J. Drug Target., 2017, vol. 25, p. 140.

    Article  CAS  PubMed  Google Scholar 

  5. Sohrabi, N., Rasouli, N., and Kamkar, M., Synthesis, characterization and DNA interaction studies of (N,N′-bis(5-phenylazosalicylaldehyde)-ethylenediamine) cobalt(II) complex, Bull. Korean Chem. Soc., 2014, vol. 35, p. 2523.

    Article  CAS  Google Scholar 

  6. Ni, Y., Lin, D., and Kokot, S., Synchronous fluorescence and UV-Vis spectrometric study of the competitive interaction of chlorpromazine hydrochloride and neutral red with DNA using chemometrics approaches, Talanta, 2005, vol. 65, p. 1295.

    Article  CAS  PubMed  Google Scholar 

  7. Temerk, Y. and Ibrahim, H., Electrochemical studies and spectroscopic investigations on the interaction of an anticancer drug flutamide with DNA and its analytical applications, J. Electroanal. Chem., 2015, vol. 736, p. 1.

    Article  CAS  Google Scholar 

  8. Carter, M.T. and Bard, A.J., Voltammetric studies of the interaction of tris(1,10-phenanthroline)cobalt(III) with DNA, J. Am. Chem. Soc., 1987, vol. 109, p. 7528.

    Article  CAS  Google Scholar 

  9. Ahmadi, F., Alizadeh, A.A., Bakhshandeh-Saraskanrood, F., Jafari, B., and Khodadadian, M., Experimental and computational approach to the rational monitoring of hydrogen-bonding interaction of 2-imidazoli-dinethione with DNA and guanine, Food Chem. Toxicol., 2010, vol. 48, p. 29.

    Article  CAS  PubMed  Google Scholar 

  10. Ahmadi, F. and Jafari, B., Voltammetry and spectroscopy study of in vitro interaction of fenitrothion with DNA, Electroanalysis, 2011, vol. 23, p. 675.

    CAS  Google Scholar 

  11. Cox, P.J., Psomas, G., and Bolos, C.A., Characterization and DNA-interaction studies of 1,1-dicyano-2,2-ethylene dithiolate Ni(II) mixed-ligand complexes with 2-amino-5-methyl thiazole, 2-amino-2-thiazoline and imidazole. Crystal structure of [Ni(i-MNT)(2a-5mt)2], Bioorg. Med. Chem., 2009, vol. 17, p. 6054.

    Article  CAS  PubMed  Google Scholar 

  12. Gao, F., Wang, Q., Zheng, M., Li, S., Chen, G., Jiao, K., and Gao, F., Electrochemical studies on the recognition of a ternary copper complex to single-stranded DNA and double-stranded DNA, Int. J. Electrochem. Sci, 2011, vol. 6, p. 1508.

    CAS  Google Scholar 

  13. Zhang, X., Li, M., Cui, Y., Zhao, J., Cui, Z., Li, Q., and Qu, K., Electrochemical behavior of calcein and the interaction between calcein and DNA, Electroanalysis, 2012, vol. 24, p. 1878.

    Article  CAS  Google Scholar 

  14. https://pubchem.ncbi.nlm.nih.gov/compound/sulfamethizole#section=Pharmacology-and-Biochemistry. Accessed Feb. 20, 2018.

  15. Petrikaitè, V., Tarasevičius, E., and Pavilonis, A., New thiazolidones-4 with sulfamethizole-2 substituent as potential antifungal and antimicrobial preparations, Biologija, 2007, vol. 53, p. 45.

    Google Scholar 

  16. Pehlivan, V, Biçer, E., Genç Bekiroğlu, Y., and Dege, N., Synthesis, in vitro antibacterial activity and calf thymus DNA binding of sulfamethizole-based Schiff bases, Abstract E-Book, 4th Int. Türk-Pak Conf. on Chemical Sciences (ITPCCS 2017), Konya, Oct. 26–28, 2017, PP017.

  17. Omanović, D. and Branica, M., Automation ofvoltammetric measurements by polarographic analyser PAR 384B, Croat. Chem. Acta, 1998, vol. 71, p. 421.

    Google Scholar 

  18. Hajian, R., Ekhlasi, E., and Daneshvar, R., Spectroscopic and electrochemical studies on the interaction of epirubicin with fish sperm DNA, E-J. Chem., 2012, vol. 9, p. 1587.

    Article  CAS  Google Scholar 

  19. Naik, T.R.R. and Naik, H.S.B., Electrochemical investigation of DNA binding on carbaldehyde oxime by cyclic voltammetry, Int. J. Electrochem. Sci., 2008, vol. 3, p. 409.

    CAS  Google Scholar 

  20. Babkina, S.S. and Ulakhovich, N.A., Complexing of heavy metals with DNA and new bioaffinity method of their determination based on amperometric DNA-based biosensor, Anal. Chem., 2005, vol. 77, p. 5678.

    Article  CAS  PubMed  Google Scholar 

  21. Shah, A., Zaheer, M., Qureshi, R., Akhter, Z., and Nazar, M.F., Voltammetric and spectroscopic investigations of 4-nitrophenylferrocene interacting with DNA, Spectrochim. Acta Part A, 2010, vol. 75, p. 1082.

    Article  CAS  Google Scholar 

  22. Asghar, F., Badshah, A., Shah, A., Rauf, M.K., Ali, M.I., Tahir, M.N., Nosheen, E., Zia-ur-Rehman, and Qureshi, R., Synthesis, characterization and DNA binding studies of organoantimony(V) ferrocenyl benzoates, J. Organomet. Chem., 2012, vol. 717, p. 1.

    Article  CAS  Google Scholar 

  23. Hua, D. and Chung, T.-S., Universal surface modification by aldehydes on polymeric membranes for isopropanol dehydration via pervaporation, J. Membrane Sci., 2015, vol. 492, p. 197.

    Article  CAS  Google Scholar 

  24. Sprung, M.A., A summary of the reactions of aldehydes with amines, Chem. Rev., 1940, vol. 26, p. 297.

    Article  CAS  Google Scholar 

  25. Huang, A. and Caro, J., Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity, Angew. Chem. Int. Ed., 2011, vol. 50, p. 4979.

    Article  CAS  Google Scholar 

  26. Patil, M.P. and Sunoj, R.B., Insights on co-catalyst-promoted enamine formation between dimethylamine and propanal through ab initio and density functional theory study, J. Org. Chem., 2007, vol. 72, p. 8202.

    Article  CAS  PubMed  Google Scholar 

  27. Chatziefthimiou, S.D., Lazarou, Y.G., Hadjoudis, E., Dziembowska, T., and Mavridis, I.M., Keto forms of salicylaldehyde Schiff bases: structural and theoretical aspects, J. Phys. Chem. B, 2006, vol. 110, p. 23701.

    Article  CAS  PubMed  Google Scholar 

  28. Filarowski, A. and Majerz, I., AIM analysis of intramolecular hydrogen bonding in O-hydroxy aryl Schiff bases, J. Phys. Chem. A, 2008, vol. 112, p. 3119.

    Article  CAS  PubMed  Google Scholar 

  29. Filarowski, A., Intramolecular hydrogen bonding in o-hydroxyaryl Schiff bases, J. Phys. Org. Chem., 2005, vol. 18, p. 686.

    Article  CAS  Google Scholar 

  30. Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed., Wayne: Clinical and Laboratory Standards Institute, 2008. Approved Standard no. M27-S3.

  31. Meti, M.D., Abbar, J.C., Nandibewoor, S.T., and Chimatadar, S.A., Voltammetric oxidation of carbenicillin and its electro analytical applications at gold electrode, Cogent Chem., 2016, vol. 2, p. 1. https://doi.org/10.1080/23312009.2016.1235459

    Google Scholar 

  32. Gosser, D.K., Cyclic Voltammetry:Simulation and Analysis of Reaction Mechanisms, New York: VCH, 1993, p. 43.

    Google Scholar 

  33. Pedrero, M., de Villena, F.J.M., Pingarron, J.M., and Polo, L.M., Determination of dinoseb by adsorptive stripping voltammetry, Electroanalysis, 1991, vol. 3, p. 419.

    Article  CAS  Google Scholar 

  34. Giannakopoulos, E., Deligiannakis, Y., and Salahas, G., Electrochemical interfacial adsorption mechanism of polyphenolic molecules onto Hanging Mercury Drop Electrode surface (HMDE), J. Electroanal. Chem., 2012, vol. 664, p. 117.

    Article  CAS  Google Scholar 

  35. Coşkun, E. and Biçer, E., Sülfatiazolün Ni(II) iyonlariyla etkileşiminin voltametrik incelenmesi, Erciyes Univ. J. Inst. Sci. Technol., 2014, vol. 30, p. 296.

    Google Scholar 

  36. Sabry, S.M., Barary, M.H., Abdel-Hay, M.H., and Belal, T.S., Adsorptive stripping voltammetric behaviour of azomethine group in pyrimidine-containing drugs, J. Pharm. Biomed. Anal., 2004, vol. 34, p. 509.

    Article  CAS  PubMed  Google Scholar 

  37. Habib, I.H.I., Weshahyi, S.A., Toubar, S., and El-Alamin, M.M.A., Cathodic stripping voltammetric determination of losartan in bulk and pharmaceutical products, Portug. Electrochim. Acta, 2008, vol. 26, p. 315.

    Article  CAS  Google Scholar 

  38. Manousek, O., Exner, O., and Zuman, P., Fission of activated carbon-nitrogen and carbon-sulphur bonds. XI. Polarographic reduction of substituted benzene-sulphoamides, in Topics on Organic Polarography, Zuman, P., Ed., London: Plenum Press, 1970, p. 322.

    Chapter  Google Scholar 

  39. Chambers, J.Q., Organic sulphur compounds, in Encyclopedia of Electrochemistry of the Elements, Bard, A.J. and Lund, H., Eds., vol. XII: Organic Section, New York: M. Dekker, 1979, chapter XII-3, p. 371.

    Google Scholar 

  40. Smyth, M.R. and Smyth, W.F., Voltammetric methods for the determination of foreign organic compounds of biological significance, Analyst, 1978, vol. 103, p. 529.

    Article  CAS  Google Scholar 

  41. Çakir, S. and Biçer, E., Synthesis, spectroscopic and electrochemical characteristics of a novel Schiff-base from saccharin and tryptophan, J. Iran. Chem. Soc., 2010, vol. 7, p. 394.

    Article  Google Scholar 

  42. Carter, M.T., Rodriguez, M., and Bard, A.J., Voltam-metric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine, J. Am. Chem. Soc., 1989, vol. 111, p. 8901.

    Article  CAS  Google Scholar 

  43. Tung, Y.-L., Lee, S.-W., Chi, Y., Chen, L.-S., Shu, C.-F., Wu, F.-I., Carty, A.J., Chou, P.-T., Peng, S.-M., and Lee, G.-H., Organic light-emitting diodes based on charge-neutral RuII phosphorescent emitters, Adv. Mater., 2005, vol. 17, p. 1059.

    Article  CAS  Google Scholar 

  44. Pakravan, P. and Masoudian, S., Study on the interaction between isatin-ß-thiosemicarbazone and calf thymus DNA by spectroscopic techniques, Iran. J. Pharm. Res., 2015, vol. 14, p. 111.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mallappa, M., Gowda, B.G., and Mahesh, R.T., Mechanism of interaction of antibacterial drug moxifloxacin with herring sperm DNA: electrochemical and spectroscopic studies, Der Pharma Chem., 2014, vol. 6, p. 398.

    CAS  Google Scholar 

  46. Jiang, Y., Yuan, Y., Wang, K., Li, H., Xu, C., and Yang, X., Spectroscopic and electrochemical studies on the binding of pyrocatechol violet with telomere DNA and its application, Int. J. Electrochem. Sci., 2012, vol. 7, p. 10933.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was presented in part and in poster form at International Eurasian Conference on Biological and Chemical Sciences (EurasianBioChem 2018), 26–27 April 2018, Ankara/TURKEY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender Biçer.

Additional information

Published in Russian in Elektrokhimiya, 2019, Vol. 55, No. 5, pp. 587–598.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biçer, E., Pehlivan, V. & Bekiroğlu, Y.G. Synthesis, Characterization, in vitro Antifungal Activities and Calf Thymus DNA Interactions of Two Different Hydroxy Benzaldehyde Derivative Schiff Bases from Sulfamethizole: Electrochemical, Spectroscopic and Biological Study. Russ J Electrochem 55, 419–428 (2019). https://doi.org/10.1134/S1023193519050045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519050045

Keywords

Navigation