Skip to main content
Log in

Fast-Scan Anodic Stripping Voltammetry for Detection of Pb(II) at Picomolar Level

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Fast-scan anodic stripping voltammetry (FSASV) was applied to sensitively detect Pb2+ on a mercury film electrode (MFE). The method was involved with a controlled preconcentration by accumulation of Pb2+ on the MFE followed by FSASV measurement. At the scan rate of 500 V/s, a linear relationship between the anodic stripping peak current and the logarithm of Pb2+ concentration in the solution was observed in the range from 0.1 µmol/L to 0.1 pmol/L with a detection limit of 0.1 pmol/L. The proposed method was successfully applied for the determination of Pb2+ in spiked water samples with satisfying recoveries in the range of 98.6 to 104.3%, and the corresponding relative standard deviation ranged from 3.7 to 5.5%. Therefore, FSASV is a sensitive, fast, cost-effective and simple method for the detection of Pb2+ at picomolar level and would be very promising in heavy metal determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flora, G., Gupta, D., and Tiwari, A., Toxicity of lead: a review with recent updates, Interdiscip. Toxicol., 2012, vol. 5, p. 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nino, W.R.G. and Chaverri, J.P., Protective effect of curcumin against heavy metals-induced liver damage, Food Chem. Toxicol., 2014, vol. 69, p. 182.

    Article  CAS  Google Scholar 

  3. Jomova, K. and Valko, M., Advances in metal-induced oxidative stress and human disease, Toxicology, 2011, vol. 283, p. 65.

    Article  CAS  PubMed  Google Scholar 

  4. The Council of the European Union, On the quality of water intended for human consumption, Official J. Eur. Commun., 1998, Council Directive 98/83/EC.

  5. Guidelines for Drinking-Water Quality, 4th ed., Genewa: World Health Organization, 2011.

  6. National Primary Drinking Water Regulations, United States Environmental Protection Agency, 2009, no. 816-F-09–004.

  7. Goullé, J.P., Saussereau, E., Mahieu, L., and Guerbet, M., Current role of ICP-MS in clinical toxicology and forensic toxicology: a metallic profile, Bioanalysis, 2014, vol. 6, p. 2245.

    Article  CAS  PubMed  Google Scholar 

  8. Burylina, M.Y. and Pupyshevb, A.A., Development of electrothermal atomic absorption spectrometry in 2005–2016, J. Anal. Chem., 2017, vol. 72, p. 935.

    Article  Google Scholar 

  9. Smith, J.W. and Saykally, R.J., Soft X-ray absorption spectroscopy of liquids and solutions, Chem. Rev, 2017, vol. 117, p. 13909.

    Article  CAS  PubMed  Google Scholar 

  10. Renfrew, A.K., Spectroscopic approaches to tracking metal-based drugs in cells and tissue, Chimia, 2017, vol. 71, p. 112.

    Article  CAS  PubMed  Google Scholar 

  11. Labatzke, T. and Schlemmer, G., Ultratrace determination of mercury in water following EN and EPA standards using atomic fluorescence spectrometry, Anal. Bioanal. Chem., 2004, vol. 378, p. 1075.

    Article  CAS  PubMed  Google Scholar 

  12. Mandil, A., Idrissi, L., and Amine, A., Stripping voltammetric determination of mercury(II) and lead(II) using screen-printed electrodes modified with gold films, and metal ion preconcentration with thiol-modified magnetic particles, Microchim. Acta, 2010, vol. 170, p. 299.

    Article  CAS  Google Scholar 

  13. Companys, E., Galceran, J., Pinheiro, J.P., Puy, J., and Salaun, P., A review on electrochemical methods for trace metal speciation in environmental media, Curr. Opin. Electrochem., 2017, vol. 3, p. 144.

    Article  CAS  Google Scholar 

  14. Bansod, B.K., Kumar, T., Thakur, R., Rana, S., and Singh, I., A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms, Biosens. Bioelectron., 2017, vol. 94, p. 443.

    Article  CAS  PubMed  Google Scholar 

  15. Lu, Y.Y., Liang, X.Q., Niyungeko, C., Zhou, J.J., Xu, J.M., and Tian, G.M., A review of the identification and detection of heavy metal ions in the environment by voltammetry, Talanta, 2018, vol. 178, p. 324.

    Article  CAS  PubMed  Google Scholar 

  16. Mehta, J., Bhardwaj, S.K., Bhardwaj, N., Paul, A.K., Kumar, P., Kim, K.H., and Deep, A., Progress in the biosensing techniques for trace-level heavy metals, Biotechnol. Adv., 2016, vol. 34, p. 47.

    Article  CAS  PubMed  Google Scholar 

  17. Saidur, M.R., Aziz, A.R.A., and Basirun, W.J., Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review, Biosens. Bioelectron., 2017, vol. 90, p. 125.

    Article  CAS  PubMed  Google Scholar 

  18. Zarcero, S.M., Quintanilla, D.P., and Sierra, I., A disposable electrochemical sensor based on bifunctional periodic mesoporous organosilica for the determination of lead in drinking waters, J. Solid State Electrochem., 2015, vol. 19, p. 2117.

    Article  CAS  Google Scholar 

  19. Raghu, G.K., Sampath, S., and Pandurangappa, M., Chemically functionalized glassy carbon spheres: a new covalent bulk modified composite electrode for the simultaneous determination of lead and cadmium, J. Solid State Electrochem., 2012, vol. 16, p. 1953.

    Article  CAS  Google Scholar 

  20. Morales, G.R., Silva, T.R., and Galicia, L., Carbon paste electrodes electrochemically modified with cyclodextrins, J. Solid State Electrochem., 2003, vol. 7, p. 355.

    Article  CAS  Google Scholar 

  21. Salmanipour, A. and Taher, M.A., An electrochemical sensor for stripping analysis of Pb(II) based on multiwalled carbon nanotube functionalized with 5-Br-PADAP, J. Solid State Electrochem, 2011, vol. 15, p. 2695.

    Article  CAS  Google Scholar 

  22. Simionca, I.M., Arvinte, A., Ardeleanu, R., and Pinteala, M., Siloxane-crown ether polyamide based electrode for electrochemical determination of lead(II) in aqueous solution, Electroanalysis, 2012, vol. 24, p. 1995.

    Article  CAS  Google Scholar 

  23. Wang, J., Lu, J., Hocevar, S.B., and Farias, P.A.M., Bismuth-coated carbon electrodes for anodic stripping voltammetry, Anal. Chem., 2000, vol. 72, p. 3218.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, T.T., Schlueter, K.T., Riehl, B.L., Johnson, J.M., and Heineman, W.R., Simplified nitrate-reductase-based nitrate detection by a hybrid thin-layer controlled potential coulometry/spectroscopy technique, Anal. Chem., 2013, vol. 85, p. 9486.

    Article  CAS  PubMed  Google Scholar 

  25. Deng, W., Tan, Y., Fang, Z., Xie, Q., Li, Y., Liang, X., and Yao, S., ABTS-multiwalled carbon nanotubes nanocomposite/Bi film electrode for sensitive determination of Cd and Pb by differential pulse stripping voltammetry, Electroanalysis, 2009, vol. 21, p. 2477.

    CAS  Google Scholar 

  26. Intarakamhang, S., Schuhmann, W., and Schulte, A., Robotic heavy metal anodic stripping voltammetry: ease and efficacy for trace lead and cadmium electroanalysis, J. Solid State Electrochem., 2013, vol. 17, p. 1535.

    Article  CAS  Google Scholar 

  27. Pinto, L. and Lemos, S.G., Comparison of different PLS algorithms for simultaneous determination of Cd(II), Cu(II), Pb(II), and Zn(II) by anodic stripping voltammetry at bismuth film electrode, Electroanalysis, 2014, vol. 26, p. 299.

    Article  CAS  Google Scholar 

  28. Sun, Q.W., Wang, J.K., Tang, M.H., Huang, L.M., Zhang, Z.Y., Liu, C., Lu, X.H., Hunter, K.W., and Chen, G.S., A new electrochemical system based on a flow-field shaped solid electrode and 3D-printed thin-layer flow cell: detection of Pb2+ ions by continuous flow accumulation square-wave anodic stripping voltammetry, Anal. Chem., 2017, vol. 89, p. 5024.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, D.L., Wang, T.T., Han, D., Rusinek, C., Steckl, A.J., and Heineman, W.R., Electrospun carbon nanofiber modified electrodes for stripping voltammetry, Anal. Chem., 2015, vol. 87, p. 9315.

    Article  CAS  PubMed  Google Scholar 

  30. Robinson, J.E., Heineman, W.R., Sagle, L.B., Meyyappan, M., and Koehne, J.E., Carbon nanofiber electrode array for the detection of lead, Electrochem. Commun., 2016, vol. 73, p. 89.

    Article  CAS  Google Scholar 

  31. Dali, M., Zinoubi, K., Chrouda, A., Abderrahmane, S., Cherrad, S., and Renault, N.J., A biosensor based on fungal soil biomass for electrochemical detection of lead(II) and cadmium(II) by differential pulse anodic stripping voltammetry, J. Electroanal. Chem., 2018, vol. 813, p. 9.

    Article  CAS  Google Scholar 

  32. Wakabayashi, K.T., Bruno, M.J., Bassb, C.E., and Park, J., Application of fast-scan cyclic voltammetry for the in vivo characterization of optically evoked dopamine in the olfactory tubercle of the rat brain, Analyst, 2016, vol. 141, p. 3746.

    Article  CAS  PubMed  Google Scholar 

  33. Pathirathna, P., Yang, Y., Forzley, K., McElmurry, S.P., and Hashemi, P., Fast-scan deposition-stripping voltammetry at carbon-fiber microelectrodes: real-time, subsecond, mercury free measurements of copper, Anal. Chem., 2012, vol. 84, p. 6298.

    Article  CAS  PubMed  Google Scholar 

  34. Sanford, A.L., Morton, S.W., Whitehouse, K.L., Oara, H.M., Lugo-Morales, L.Z., Roberts, J.G., and Sombers, L.A., Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes, Anal. Chem., 2010, vol. 82, p. 5205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zachek, M.K., Takmakov, P., Moody, B., Wightman, R.M., and McCarty, G.S., Simultaneous decoupled detection of dopamine and oxygen using pyrolyzed carbon microarrays and fast-scan cyclic voltammetry, Anal. Chem., 2009, vol. 81, p. 6258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hashemi, P., Dankoski, E.C., Lama, R., Wood, K.M., Takmakov, P., and Wightman, R.M., Brain dopamine and serotonin differ in regulation and its consequences, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, p. 11510.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wu, H.P., Dynamics and performance of fast linear scan anodic stripping voltammetry of Cd, Pb, and Cu using in situ-generated ultrathin mercury films, Anal. Chem., 1996, vol. 68, p. 1639.

    Article  CAS  PubMed  Google Scholar 

  38. Munteanu, G., Munteanu, S., and Wipf, D.O., Rapid determination of zeptomole quantities of Pb2+ with the mercury monolayer carbon fiber electrode, J. Electroanal. Chem., 2009, vol. 632, p. 177.

    Article  CAS  Google Scholar 

  39. Yang, Y.Y., Ibrahim, A.A., Stockdill, J.L., and Hashemi, P., A density-controlled scaffolding strategy for covalent functionalization of carbon-fiber microelectrodes, Anal. Methods-UK, 2015, vol. 7, p. 7352.

    Article  CAS  Google Scholar 

  40. Yang, Y.Y., Ibrahim, A.A., Hashemi, P., and Stockdill, J.L., Real-time, selective detection of copper(II) using ionophore-grafted carbon-fiber microelectrodes, Anal. Chem., 2016, vol. 88, p. 6962.

    Article  CAS  PubMed  Google Scholar 

  41. Baranski, A.S., Rapid anodic stripping analysis with ultramicroelectrodes, Anal. Chem., 1987, vol. 59, p. 662.

    Article  CAS  Google Scholar 

  42. Guo, Z.Y. and Lin, X.Q., Ultrafast cyclic voltammetry at scan rates of up to 3 MV s−1 through a single-opamp circuit with positive feedback compensation of ohmic drop, J. Electroanal. Chem., 2004, vol. 568, p. 45.

    Article  CAS  Google Scholar 

  43. Amatore, C., Oleinick, A., and Svir, I., Theoretical analysis of microscopic ohmic drop effects on steadystate and transient voltammetry at the disk microelectrode: a quasi-conformal mapping modeling and simulation, Anal. Chem., 2008, vol. 80, p. 7947.

    Article  CAS  PubMed  Google Scholar 

  44. Wipf, D.O., Ohmic drop compensation in voltammetry: Iterative correction of the applied potential, Anal. Chem., 1996, vol. 68, p. 1871.

    Article  CAS  PubMed  Google Scholar 

  45. Deng, Z.X. and Lin, Q.X., Exponentially expanded grid network approach (EEGNA): an efficient way for the simulation of stiff electrochemical problems, Chinese J. Chem., 2003, vol. 21, p. 1137.

    Article  CAS  Google Scholar 

  46. Deng, Z.X. and Lin, Q.X., Digital simulation of fast cyclic voltammogram by integration of the double layer charging current, J. Electroanal. Chem., 1999, vol. 464, p. 215.

    Article  CAS  Google Scholar 

  47. Deng, Z.X., Zhao, W., and Lin, X.Q., Simplex optimization-numerical simulation method for FCV curve fitting, Chin. J. Anal. Chem., 1999, vol. 27, p. 383.

    CAS  Google Scholar 

  48. Lin, X.Q. and Deng, Z.X., An improved electrochemical numerical simulation for the characterization of the influences of uncompensated solution resistance on cyclic voltammograms, J. Anhui Normal Univ., 1998, vol. 21, p. 333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangbo Wu or Zhiyong Guo.

Additional information

Published in Russian in Elektrokhimiya, 2019, Vol. 55, No. 3, pp. 358–365.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Liu, P., Hao, T. et al. Fast-Scan Anodic Stripping Voltammetry for Detection of Pb(II) at Picomolar Level. Russ J Electrochem 55, 222–228 (2019). https://doi.org/10.1134/S1023193519020162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519020162

Keywords

Navigation