Skip to main content
Log in

One-step electrochemical elaboration of SnO2 modified electrode for lead ion trace detection in drinking water using SWASV

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A facile method was proposed for the elaboration of an electrochemical sensor for heavy metal’s trace detection by using square wave anodic stripping voltammetry (SWASV); this method is based on a simple anodic conversion of tin electrode into Sn/SnO2 modified electrode. Both electrochemical and physico-chemical techniques were used to confirm the modification process and better understand the electrode’s behavior. Then, depending on the operating conditions, the response signal was studied and adjusted in order to obtain optimal sensor performance. When optimized, the proposed method reached a lowest detection limit (LOD) of 2.15 μg L−1 (0.0104 μM), and quantification limit (LOQ) of 5.36 μg L−1 (0.0259 μM), in linearity range between from 6.2 and 20.7 μg L−1. Additionally, after having used the elaborated electrode for ten successive measurements, the repeatability remains very high with an RSD of approximately 5.3%; furthermore, ten other species appear to have very slight effect on Pb(II) detection. Finally, for the method validation, the proposed electrode was able to sense different lead concentration integrated in a local bottled spring water by showing recovery levels ranging from 103.8 to 108.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abdul Hamid H, Lockman Z, Mohamad N, Zakaria N, Abdul Razak K (2021) (2021) Sensitive detection of Pb ions by square wave anodic stripping voltammetry by using iron oxide nanoparticles decorated zinc oxide nanorods modified electrode. Mater Chem Phys 273:125148

    Article  Google Scholar 

  • Ackerman CM, Chang CJ (2018) Copper signaling in the brain and beyond. J Biol Chem 293(2018):4628–4635

    Article  CAS  Google Scholar 

  • Alghamdi AH (2010) (2010) Applications of stripping voltammetric techniques in food analysis. Arab J Chem 3(1):1–7

    Article  CAS  Google Scholar 

  • AL-Gahouari T, Bodkhe G, Sayyad P, Ingle N, Mahadik M, Shirsat SM, Deshmukh M, Musahwar N, Shirsat M (2020) Electrochemical sensor: L-cysteine induced selectivity enhancement of electrochemically reduced graphene oxide–multiwalled carbon nanotubes hybrid for detection of lead (Pb2+) ions. Front Mater 7:68. https://doi.org/10.3389/fmats.2020.00068

  • An HK, Park BY, Kim DS (2001) Crab shell for the removal of heavy metals from aqueous solution. Water Res 35(2001):3551–3556

    Article  CAS  Google Scholar 

  • Aragay G, Pons J, Merkoci A (2011) (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111(5):3433–3458

    Article  CAS  Google Scholar 

  • Babu B, Reddy IN, Yoo K, Kim D, Shim J (2018) Bandgap tuning and XPS study of SnO2 quantum dots. Mat Let 221(2018):211–215

    Article  CAS  Google Scholar 

  • Baghayeri M, Amiri A, Karimabadi F et al (2021) Magnetic MWCNTs-dendrimer: a potential modifier for electrochemical evaluation of As (III) ions in real water samples. J Electroanal Chem 888(August 2020):115059. https://doi.org/10.1016/j.jelechem.2021.115059

    Article  CAS  Google Scholar 

  • Baghayeri M, Maleki B, Zarghani R (2014) Voltammetric behavior of tiopronin on carbon paste electrode modified with nanocrystalline Fe50Ni50 alloys. Mater Sci Eng C 44:175–182. https://doi.org/10.1016/j.msec.2014.08.023

    Article  CAS  Google Scholar 

  • Bai B, Bai F, Li X, Nie Q, Jia X, Wu H (2022) The remediation efficiency of heavy metal pollutants in water by industrial red mud particle waste. Environ Technol Innov 28:102944. https://doi.org/10.1016/j.eti.2022.102944

    Article  CAS  Google Scholar 

  • Bai F, Zhang X, Hou X, Liu H, Chen J, Yang T (2019) (2019) Individual and simultaneous voltammetric determination of Cd(II), Cu(II) and Pb(II) applying amino functionalized Fe3O4@carbon microspheres modified electrode. Electroanalysis 31(8):1448–1457

    Article  Google Scholar 

  • Bansod B, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94(2017):443–445

    Article  CAS  Google Scholar 

  • Bedin KC, Mitsuyasu EY, Ronix A, Cazetta AL, Pezoti O, Almeida VC (2018) Inexpensive bismuth-film electrode supported on pencil-lead graphite for determination of Pb(II) and Cd(II) ions by anodic stripping voltammetry. Int J Anal Chem 2018:1–9

    Article  Google Scholar 

  • Beitollahi H, Safaei M, Shishehbore MR, Tajik S (2019) (2019) Application of Fe3O4@SiO2/ GO nanocomposite for sensitive and selective electrochemical sensing of tryptophan. Electrochem Sci Eng 9(1):45–53

    Article  CAS  Google Scholar 

  • Berrabah SE, Benchettara A, Smaili F, Tabti S, and Benchettara A, (2021) Electrodeposition of zinc hydroxide on carbon graphite electrode for electrochemical determination of trace copper in water samples using square wave anodic stripping voltammetry. Mater Chem Phys 278(October 2021):125670, 2021

  • Brahimi B, Mekatel E, Kenfoud H, Berrabah SE, Trari M (2022) Efficient removal of the antibiotic Cefixime on Mg0.3Zn0.7O under solar light: kinetic and mechanism studies. Environ Sci Pollut Res 29(50):75512–75524. https://doi.org/10.1007/s11356-022-20626-y

    Article  CAS  Google Scholar 

  • Brennan JT, Ogbonnewo I, Ogunleye O, Hernandez C, (2017) The standards for water quality testing: protecting the public from another Flint water crisis.

  • Chen Z, Fan T, Zhang YQ, Xiao J, Gao M, Duan N, Zhanga J, Li J, Liu Q, Yi X, Luo J-L (2019) Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH. Apl Catlys b: Env 261(2019):118243

    Google Scholar 

  • Corns WT, Chen B, Stockwell PB (2010) Atomic fluorescence spectrometry: a suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury. J Anal at Spectrom 25(2010):933–946

    Google Scholar 

  • Dahaghin Z, Kilmartin PA, Mousavi HZ (2021) 2021) A novel electrochemical sensor for simultaneous determination of cadmium and lead using graphite electrodes modified with poly(p-coumaric acid. Microchem J 168:106406

    Article  Google Scholar 

  • Dil NN, Sadeghi M (2018) Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu (II) metal ions. J Hazard Mater 351(2018):38–53

    Article  CAS  Google Scholar 

  • Flores-Álvarez JM, Cortés-Arriagada D, Reyes-Gómez J, Gómez-Sandoval Z, Rojas‑Montes JC, Pineda-Urbina K (2021) 2-Mercaptobenzothiazole modified carbon paste electrode as a novel copper sensor: an electrochemical and computational study. J Electroanal Chem 888(January). https://doi.org/10.1016/j.jelechem.2021.115208

  • Gao C, Yu XY, Xiong SQ, Liu JH, Huang XJ (2013) (2013) Electrochemical detection of arsenic(III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold. Anal Chem 85(5):2673–2680

    Article  CAS  Google Scholar 

  • Golikand AN, Raoof J, Baghayeri M, Asgari M, Irannejad L (2009) Nickel electrode modified by N, N-bis(salicylidene)phenylenediamine (Salophen) as a catalyst for methanol oxidation in alkaline medium. Russ J Electrochem 45(2):192–198. https://doi.org/10.1134/S1023193509020104

    Article  CAS  Google Scholar 

  • Gurgul M, Lytvynenko AS, Jarosz M, Gawlak K, Sulka GD, Zaraska L (2020) (2020) Hierarchical nanoporous Sn/SnOx systems obtained by anodic oxidation of electrochemically deposited Sn nanofoams. Nanomaterials 10(3):1–12

    Article  Google Scholar 

  • Hamid HA, Lockman Z, Mohamad Nor N, Zakaria ND, Abdul Razak K (2021) (2021) Sensitive detection of Pb ions by square wave anodic stripping voltammetry by using iron oxide nanoparticles decorated zinc oxide nanorods modified electrode. Mater Chem Phys 273:125148

    Article  CAS  Google Scholar 

  • Hk T (2016) (2016) Atomic absorption spectroscopic determination of heavy metal concentrations in Kulufo River, Arbaminch, Gamo Gofa, Ethiopia. J Environ Anal Chem 03(01):1–4

    Article  Google Scholar 

  • Hu CC, Hsu TY (2008) Effects of complex agents on the anodic deposition and electrochemical characteristics of cobalt oxides. Electrochim Acta 53(2008):2386–2395

    Article  CAS  Google Scholar 

  • Jiang Y, Liu C, Huang A (2019) (2019) EDTA-functionalized covalent organic framework for the removal of heavy-metal ions. ACS Appl Mater Interfaces 11(35):32186–32191

    Article  CAS  Google Scholar 

  • Karimi-Maleh H, Beitollahi H, Senthil Kumar P et al (2022) Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection. Food Chem Toxicol 164(February). https://doi.org/10.1016/j.fct.2022.112961

  • Kim C, Park J, Kim W, Lee W, Na S, Park J (2022) (2022) Detection of Cd2+ and Pb2+ using amyloid oligomer–reduced graphene oxide composite. Bioelectrochemistry 147:108214

    Article  CAS  Google Scholar 

  • Liu D, Pan J, Tang J, Liu W, Bai S, Luo R (2018) Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. Jrnl Phys Chem of Soli 124(2018):36–43

    Google Scholar 

  • Liu Z, Wang R, Xue Q, Chang C, Liu Y, He L (2023) Highly efficient detection of Cd(II) ions in water by graphitic carbon nitride and tin dioxide nanoparticles modified glassy carbon electrode. Inorg Chem Commun. 148(July 2022). https://doi.org/10.1016/j.inoche.2022.110321

  • Mahieddine A, Adnane-amara L (2023) Constructing and electrochemical performance of NiCo-LDHs@h-Ni NWs core-shell for hydrazine detection in environmental samples. J Electroanal Chem 117168. https://doi.org/10.1016/j.jelechem.2023.117168

  • Masindi V, Muedi KL (2018) Environmental contamination by heavy metals. In: Saleh HEDM, Aglan RF (eds) Heavy Metals. IntechOpen, pp 115–133. https://doi.org/10.5772/intechopen.76082

  • Nodehi M, Baghayeri M, Kaffash A (2022) Application of BiNPs/MWCNTs-PDA/GC sensor to measurement of Tl (1) and Pb (II) using stripping voltammetry. Chemosphere 301:134701. https://doi.org/10.1016/j.chemosphere.2022.134701

  • Nodehi M, Baghayeri M, Veisi H (2021) Preparation of GO/Fe3O4@PMDA/AuNPs nanocomposite for simultaneous determination of As3+ and Cu2+ by stripping voltammetry. Talanta. 230(February):122288. https://doi.org/10.1016/j.talanta.2021.122288

  • Rahm CE, Torres-Canas F, Gupta P, Poulin P, Alvarez NT (2020) Inkjet printed multi-walled carbon nanotube sensor for the detection of lead in drinking water. Electroanalysis 32(2020):1533–1545

    Article  CAS  Google Scholar 

  • Palisoc S, Gonzales AG, Pardilla A, Racines L, Natividad M (2019) (2019) Electrochemical detection of lead and cadmium in UHT-processed milk using bismuth nanoparticles/Nafion®-modified pencil graphite electrode. Sens Bio-Sensing Res 23:100268

    Article  Google Scholar 

  • Phal S, Nguyễn H, Berisha A, Tesfalidet S (2021) (2021) In situ Bi/carboxyphenyl-modified glassy carbon electrode as a sensor platform for detection of Cd2+ and Pb2+ using square wave anodic stripping voltammetry. Sens Bio-Sens Res 34:100455

    Article  Google Scholar 

  • Safaei M, Beitollahi H, Shishehbore MR, Tajik S, Hosseinzadeh R (2019) Electrocatalytic determination of captopril using a carbon paste electrode modified with N-(ferrocenyl-methylidene)fluorene-2-amine and graphene/ZnO nanocomposite. J Serbian Chem Soc 84(2):175–185. https://doi.org/10.2298/JSC180414095S

    Article  CAS  Google Scholar 

  • Song HJ, Zhang LC, He CL, Qu Y, Tian YF, Lv Y (2011) (2011) Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cat luminescence gas sensors. J Mater Chem 21:5972

    Article  CAS  Google Scholar 

  • Sun W, Hong Y, Li T et al (2023) Biogenic synthesis of reduced graphene oxide decorated with silver nanoparticles (rGO/Ag NPs) using table olive (olea europaea) for efficient and rapid catalytic reduction of organic pollutants. Chemosphere 310(July 2022):136759. https://doi.org/10.1016/j.chemosphere.2022.136759

    Article  CAS  Google Scholar 

  • Sun YF, Wang J, Li PH, Yang M, Huang XJ (2019) Highly sensitive electrochemical detection of Pb(II) based on excellent adsorption and surface Ni(II)/Ni(III) cycle of porous flower-like NiO/rGO nanocomposite. Sens Actuators B 292(2019):136–147

    Article  CAS  Google Scholar 

  • Suvith VS, Devu VS, Philip D (2020) (2020) Facile synthesis of SnO2/NiO nano-composites: Structural, magnetic and catalytic properties. Ceram Int 46(1):786–794

    Article  CAS  Google Scholar 

  • Tabti S, Benchettara A, Smaili F, Benchettara A, Berrabah SE (2022) Electrodeposition of lead dioxide on Fe electrode: application to the degradation of Indigo Carmine dye. J Appl Electrochem 52(2022):1207–1217

    Article  CAS  Google Scholar 

  • Terbouche A, Lameche S, Ait-Ramdane-Terbouche C, Guerniche D, Lerari D, Bachari K, Hauchard D (2016) A new electrochemical sensor based on carbon paste electrode/Ru(III) complex for determination of nitrite: electrochemical impedance and cyclic voltammetry measurements. Measurement 92(2016):524–533

    Article  Google Scholar 

  • Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41(1972):91–128

    Article  CAS  Google Scholar 

  • Vorokhta M, Khalakhan I, Vondráček M, Tomeček D, Vorokhta M, Marešová E, Nováková J, Vlček J, Fitl P, Novotný M, Hozák P, Lančok J, Vrňatac M, Matolínová I, Matolín V (2018) Investigation of gas sensing mechanism of SnO2 based chemiresistor using near ambient pressure XPS. Surf Sci 677(2018):284–290

    Article  CAS  Google Scholar 

  • Wang X, Xu M, Liu L, Cui Y, Geng H, Zhao H, Liang B, Yang J (2019) Effects specific surface area and oxygen vacancy on the photocatalytic properties of mesoporous F doped SnO2 nanoparticles prepared by hydrothermal method. Jornl Matrl Scin Matrl in Elec 30(2019):16110–16123

    Article  CAS  Google Scholar 

  • Wei Y, Kong LT, Yang R, Wang L, Liu JH, Huang XJ (2011) Electrochemical impedance determination of polychlorinated biphenyl using a pyrenecyclodextrin-decorated single-walled carbon nanotube hybrid. Chem Commun 47(18):5340–5342. https://doi.org/10.1039/c1cc11267h

    Article  CAS  Google Scholar 

  • Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, Chen J, Wang X (2019) Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut 246(2019):608–620

    Article  CAS  Google Scholar 

  • Xu F, Deng M, Li G, Chen S, Wang L (2013) (2013) Electrochemical behavior of cuprous oxide–reduced graphene oxide nanocomposites and their application in nonenzymatic hydrogen peroxide sensing. Electrochim Acta 88:59

    Article  CAS  Google Scholar 

  • Zhang W, Fan S, Li X, Liu S, Duan D, Leng L, Cui C, Qu L (2020) Electrochemical determination of lead(II) and copper(II) by using phytic acid and polypyrrole functionalized metalorganic frameworks. Microchim Acta 187(2020):69–77

    Article  CAS  Google Scholar 

  • Zhang Z, Zhai S, Wang M, He L, Peng D, Liu S, Yang Y, Fang S, Zhang H (2015) (2015) Electrochemical sensor based on a polyaniline-modified SnO2 nanocomposite for detecting ethephon. Anal Method 7:4725

    Article  CAS  Google Scholar 

  • Zhou SF, Han XJ, Fan HL, Huang J, Liu YQ (2018) enhanced electrochemical performance for sensing Pb(II) based on graphene oxide incorporated mesoporous MnFe2O4 nanocomposites. J Alloys Compd 747(2018):447–454

    Article  CAS  Google Scholar 

  • Ziyatdinova G, Yakupova E, Davletshin R (2021) Voltammetric determination of hesperidin on the electrode modified with SnO2 nanoparticles and surfactants. Electroanalysis 33(12):2417–2427. https://doi.org/10.1002/elan.202100405

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks for the Directorate General of Scientific Research and Technological Development (DGSRTD, Algiers). Also, we warmly thank Khaled DERKAOUI from Research Center of Semi-Conductor Technology for Energy, CRTSE, for his help in XPS analysis.

Funding

This study was financially supported by the Faculty Chemistry (USTHB, Algiers).

Author information

Authors and Affiliations

Authors

Contributions

Siham Lameche, writing, original draft preparation; Salah Eddine Berrabah, conceptualization, writing — review and editing, design; Abdelhakim Benchettara, literature survey; Sabrina Tabti, conceptualization; Amar Manseri, data analysis; Djaouida Djadi, visualization; Jean-François Bardeau, correction and supervision; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Salah Eddine Berrabah.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Weiming Zhang

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 409 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lameche, S., Berrabah, S.E., Benchettara, A. et al. One-step electrochemical elaboration of SnO2 modified electrode for lead ion trace detection in drinking water using SWASV. Environ Sci Pollut Res 30, 44578–44590 (2023). https://doi.org/10.1007/s11356-023-25517-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-25517-4

Keywords

Navigation