Skip to main content
Log in

Chemically Modified Electrode Based on Polytriphenylamine Derivative Applied to Graphite Foil

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties of a polymer coating based on the triphenylamine derivative 4,4′,4″-tris(N, N-diphenylamino)triphenylamine (TDATA) and a composite material obtained in situ by oxidative polymerization of TDATA in the presence of single-walled carbon nanotubes (SWNT) PTDATA—15 wt% SWNT applied to graphite foil (Gf) were studied. The preliminary anode treatment of the starting GF significantly improves the adhesion of the polymer and composite films to the substrate surface and allows the creation of electroactive polymer coatings by casting stable dispersions of the polymer and composite in formic acid. The results of studies by cyclic voltammetry (CV) and charging-discharging curves of the PTDATA and PTDATA—15 wt% SWNT on activated graphite foil (AGF) were compared with the data for the Ni/PTDATA and Ni/PTDATA—15 wt% SWNT electrodes to evaluate the effect of substrates on the capacity characteristics of the polymer and composite films in an organic electrolyte (1 M LiClO4 in propylene carbonate). The use of modified graphite foil as electric contact leads to a significant increase in the electrochemical capacity and stability of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, X., Qi, X., Boey, F., and Zhang, H., Graphene-based composites, Chem. Soc. Rev., 2012, vol. 41, p. 666.

    Article  CAS  PubMed  Google Scholar 

  2. Song, Z. and Zhou, H., Towards sustainable and versatile energy storage devices: an overview of organic electrode materials, Energy Environ. Sci., 2013, vol. 6, p. 2280.

    Article  CAS  Google Scholar 

  3. Sorokina, N.E., Nikol’skaya, I.V., Ionov, S.G., and Avdeev, V.V., Acceptor-type graphite intercalation compounds and new carbon materials based on them, Russ. Chem. Bull., 2005, vol. 54, no. 8, p. 1749.

    Article  CAS  Google Scholar 

  4. Savchenko, D.V. and Ionov, S.G., Physical properties of carbon composite materials with low percolation threshold, J. Phys. Chem. Solids, 2010, vol. 71, p. 548.

    Article  CAS  Google Scholar 

  5. Savchenko, D.V., Serdan, A.A., Morozov, V.A., Van Tendeloo, G., and Ionov, S.G., Improvement of the oxidation stability and the mechanical properties of flexible graphite foil by boron oxide impregnation, New Carbon Mater., 2012, vol. 27, no. 1, p. 12.

    Article  CAS  Google Scholar 

  6. Shornikova, O.N., Kogan, E.V., Sorokina, N.E., and Avdeev, V.V., The Specific Surface Area and Porous Structure of Graphite Materials, Russ. J. Phys. Chem. A., 2009, vol. 83, no. 6, p. 1022.

    Article  CAS  Google Scholar 

  7. Tkachenko, L.I., Nikolaeva, G.V., Ryabenko, A.G., Dremova, N.N., Yakushchenko, I.K., Yudanova, E.N., and Efimov, O.N., Electrochemical properties of the polytriphenylamine derivative-single-walled carbon nanotube composite, Russ. J. Electrochem., 2018 (in press).

  8. Zhou, Y.-K., He, B.-L., Zhou, W.-J., et al., Electrochemical capacitance of well coated single-walled carbon nanotube with polyaniline composites, Electrochim. Acta, 2004, vol. 49, no. 2, p. 257.

    Article  CAS  Google Scholar 

  9. Szabo, T., Berkesi, O., Forgo, P., et al., Evolution of surface functional groups in a series of progressively oxidized graphite oxides, Chem. Mater., 2006, vol. 18, p. 2740.

    Article  CAS  Google Scholar 

  10. Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., et al., Diazonium functionalization of surfactant wrapped chemically converted graphene sheets, J. Am. Chem. Soc., 2008, vol. 130, p. 16201.

    Article  CAS  PubMed  Google Scholar 

  11. Paredes, J.I., Villar-Rodil, S., Solíe-Fernández, P., et al., Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide, Langmuir, 2009, vol. 25, p. 5957.

    Article  CAS  PubMed  Google Scholar 

  12. Grigoryan, N.S., Gubanov, A.A., Vagramyan, T.A., and Korshak, Ju.V., Electrochemical modification of the carbon fiber surface, Russ. J. Appl. Chem., 2015, vol. 88, no. 7, p. 1150.

    Article  CAS  Google Scholar 

  13. Su, C., He, H., Xu, L., Zhao, K., Zheng, C., and Zhang, C., A mesoporous conjugated polymer based on a high free radical density polytriphenylamine derivative: its preparation and electrochemical performance as a cathode material for Li-ion batteries, J. Mater. Chem. A., 2017, vol. 5, p. 2701.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. I. Tkachenko or O. N. Efimov.

Additional information

Russian Text © L.I. Tkachenko, G.V. Nikolaeva, E.N. Kabachkov, O.N. Efimov, S.G. Ionov, 2019, published in Elektrokhimiya, 2019, Vol. 55, No. 3, pp. 350–357.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachenko, L.I., Nikolaeva, G.V., Kabachkov, E.N. et al. Chemically Modified Electrode Based on Polytriphenylamine Derivative Applied to Graphite Foil. Russ J Electrochem 55, 215–221 (2019). https://doi.org/10.1134/S1023193519020137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519020137

Keywords

Navigation