Skip to main content
Log in

The Effect of Supports of Glassy–Carbon and Activated Graphite Foil on the Electrochemical Behavior of Composite Coatings Based on Polyaniline and Its N-Substituted Derivatives

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract—Hybrid polymer nanomaterials are synthesized based on polyaniline (PAni) and its N-substituted derivative poly-3,6-dianiline-2,5-dichloro-1,4-benzoquinone (PDADCB) in combination with graphene oxide (GO). The electrochemical properties of electrodes formed by a composite polymer coatings based on PAni or PDADCB (combined with GO) and supported by glassy carbon and activated graphite foil (AGF) are studied. It is shown that the electron-conducting nanocomposite structure formed on the AGF foil has the electrochemical capacitance higher than 100 F/g and exhibits stable capacitance characteristics in a substantially extended potential interval in a protonic (1 М H2SO4) electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Chen, W. and Mu, Sh., The electrocatalytic oxidative polymerizations of aniline and aniline derivatives by grapheme, Electrochim. Acta, 2011, vol. 56, p. 2284.

    Article  CAS  Google Scholar 

  2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Electric field effect in atomically thin carbon films, Science, 2004, vol. 306, p. 666.

    Article  CAS  Google Scholar 

  3. Peigney, A., Laurent, C., Flahaut, E., Bacsa, R.R., and Rousset, A., Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, 2001, vol. 39, p. 507.

    Article  CAS  Google Scholar 

  4. Geim, A.K. and Novoselov, K.S., The rise of graphene, Nat. Mater. 2007, vol. 6, p. 183.

    Article  CAS  Google Scholar 

  5. Hong, W.J., Bai, H., Xu, Y.X., Yao, Z.Y., Gu, Z.Z., and Shi, G.Q., Preparation of gold nanoparticle graphene composites with controlled weight contents and their application in biosensors, J. Phys. Chem. C, 2010, vol. 114, p. 1822.

    Article  CAS  Google Scholar 

  6. Wang, L., Tian, C.G., Wang, H., Ma, Y.G., Wang, B.L., and Mass H.G., Production of graphene via an in situ self-generating template route and its promoted activity as electrocatalytic support for methanol electroxidization, J. Phys. Chem. C., 2010, vol. 114, p. 8727.

    Article  CAS  Google Scholar 

  7. Hong, W.J., Xu, Y.X., Lu, G.W., Li, C., and Shi, G.Q., Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells, Electrochem. Commun., 2008, vol. 10, p. 1555.

    Article  CAS  Google Scholar 

  8. Choi, D.W., Wang, D.H., Viswanathan, V.V., Bae, I.T., Wang, W., Nie, Z.M., Zhang, J.G., Graff, G.L., Liu, J., Yang, Z.G., and Duong, T., Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage, Electrochem. Commun., 2010, vol. 12, p. 378.

    Article  CAS  Google Scholar 

  9. Zhao, L., Zhao, L., Xu, Y.X., Qiu, T.F., Zhi, L.J., and Shi, G.Q., Polyaniline electrochromic devices with transparent graphene electrodes, Electrochim. Acta, 2009, vol. 55, p. 491.

    Article  CAS  Google Scholar 

  10. Gilje, S., Han, S., Wang, M.S., Wang, K.L., and Kaner, R.B., A chemical route to graphene for device applications, Nano Lett., 2007, vol. 7, p. 3394.

    Article  CAS  Google Scholar 

  11. Shornikova, O.N., Kogan, E.V., Sorokina, N.E., and Avdeev, V.V., The specific surface area and porous structure of graphite materials, Russ. J. Phys. Chem. A., 2009. vol. 83, no. 6. p. 1022.

    Article  CAS  Google Scholar 

  12. Abalyaeva, V.V., Nikolaeva, G.V., Kabachkov, E.N., Kiseleva, S.G., Orlov, A.V., Efimov, O.N., and Karpacheva, G.P., Obtainment and comparative study of electrochemical behavior of composite electrodes based on polyaniline and its N-substituted derivatives, Polym. Sci., Ser. B, 2018, vol. 60, no. 6, p. 777.https://doi.org/10.1134/S1560090418060015

    Article  Google Scholar 

  13. Gu, H., Su, X., and Loh, K.P., Electrochemical impedance sensing of DNA hybridization on conducting polymer film-modified diamond, J. Phys. Chem. B, 2005, vol. 109, p. 13  611.

    Article  Google Scholar 

  14. Patil, D.S., Pawar, S.A., Devan, R.S., Mal, S.S., Gang, M.G., Ma, Y.R., Hong, C.K, Kim, J.H., and Patil, P.S., Polyaniline based electrodes for electrochemical supercapacitor: Synergistic effect of silver, activated carbon and polyaniline, J. Electroanal. Chem., 2014, vol. 724, p. 21.

    Article  CAS  Google Scholar 

  15. Zhaoa, B., Liua, P.,Jianga, Y., Taob, H., Songa, J., Fanga, T., and Xua, W., Supercapacitor performances of thermally reduced graphene oxide, J. Power Sources, 2012, vol. 198, p. 423.

    Article  Google Scholar 

  16. Kieffel, Ya., Travers, J.P., Ermolieff, A., and Rouchon, D., Effect of chemical degradation on electrical properties, J. Appl. Polym. Sci., 2002, vol. 86, p. 395.

    Article  CAS  Google Scholar 

  17. Lindfors, T., Kvarnström, C., and Ivaska, A., Raman and UV–vis spectroscopic study of polyaniline membranes containing a bulky cationic additive, J. Electroanal. Chem., 2002, vol. 518, is. 2, p. 131.

    Article  CAS  Google Scholar 

  18. Dhibar, S., Sahoo, S., and Das, C.K., Copper chloride-doped polyaniline/multiwalled carbon nanotubes nanocomposites: Superior electrode material for supercapacitor applications, Polym. Compos., 2013, vol. 34, is. 4, p. 517.

    Article  CAS  Google Scholar 

  19. Refat, M.S., Ibrahim, O.B., Al-Didamony, H., El-Noir, K.M.A., and El-Zayat, L., Spectroscopic and thermal studies on the charge transfer complexes formed between morpholine as donor with p-chloranil and 7,7′,8,8′-tetracyanoquinodimethane, J. Saudi Chem. Soc., 2012, vol. 16, p. 227.

    Article  CAS  Google Scholar 

  20. Qiu-Feng, L., Huang, M.-R., and Li, X.-G., Synthesis and heavy metal ion sorption of pure sulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and stability, Chem. – Eur. J., 2007, vol. 13, p. 6009.

    Article  Google Scholar 

  21. Trchova, M., Moravkova, Z., Blaha, M., and Stejskal, J., Raman spectroscopy of polyaniline and oligoaniline thin films, Electrochim. Acta, 2014, vol. 122, p. 28.

    Article  CAS  Google Scholar 

  22. Wang, Y., Wu, X., Zhang, W., Li, J., Luo, Ch., and Wang, Q., Fabrication and enhanced electromagnetic wave absorption properties of sandwich-like graphene @ NiO @ PANI decorated with Ag particles, Synth. Met., 2017, vol. 229, p. 82.

    Article  CAS  Google Scholar 

  23. Trchova, M. and Stejskal, Ja., Polyaniline: The infrared spectroscopy of conducting polymer nanotubes, Pure Appl. Chem., 2011, vol. 83, p. 1803.

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out in accordance with the State Programs 0089-2019-0010 and 0089-2014-0022 (Institute of Problems of Chemical Physics, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Abalyaeva.

Ethics declarations

CONFLICT OF INTEREST

The authors state the absence of conflict of interest.

ADDITIONAL INFORMATION

Absent.

Additional information

Translated by T. Safonova

Based on the paper presented at the XIV Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka (Russia), September 9–13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abalyaeva, V.V., Nikolaeva, G.V., Kabachkov, E.N. et al. The Effect of Supports of Glassy–Carbon and Activated Graphite Foil on the Electrochemical Behavior of Composite Coatings Based on Polyaniline and Its N-Substituted Derivatives. Russ J Electrochem 55, 745–755 (2019). https://doi.org/10.1134/S1023193519080020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519080020

Keywords:

Navigation