Skip to main content
Log in

A Highly Sensitive Ascorbic Acid Sensor Based on Graphene Oxide/CdTe Quantum Dots-Modified Glassy Carbon Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Quantum dots (QDs) and graphene oxide (GO) are extremely attractive and important nanomaterials in analytical applications because of their their unusual chemical, physical and electronic properties. In this work, CdTe QDs with the size of about 3 nm were prepared and a novel electrochemical sensing material of ascorbic acid on GO/CdTe QDs/GC electrode was explored. Transmission electron microscopy (TEM) was used to examine the morphological characterization of CdTe QDs and cyclic voltammetry (CV) and electrochemical impedance spectroscopy were used to perform the electrochemical investigations of the GO/CdTe QDs/GC electrode. Because of the synergy between the CdTe QDs and GO, this novel sensing based on CdTe QDs/GO/GC electrode responded even more sensitively and selectively than that based on bare GC electrode. Effects of pH value, buffer concentration, deposition potential and deposition time and electroactive interferents on the response of GO/CdTe QDs/GC electrode for ascorbic acid sensor were discussed. Under optimum working conditions, a linear response of the modified electrode was obtained over the concentration range of 32.3–500.0 µM with the detection limit of 6.1 µM for ascorbic acid. Finally, the inexpensive, reliable and sensitive modified electrode based on GO/CdTe QDs/GC was succesfully applied for the determination of ascorbic acid in citrus samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalimuthu, P. and John, S.A., Electropolymerized film of functionalized thiadiazole on glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid, Bioelectrochemistry, 2009, vol. 77, no. 1, pp. 13–18.

    Article  CAS  PubMed  Google Scholar 

  2. Padayatty, S.J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.-H., Chen, S., Corpe, C., Dutta, A., Dutta, S.K., and Levine, M., Vitamin C as an antioxidant: evaluation of its role in disease prevention, J. Am. College Nutrition, 2003, vol. 22, no. 1, pp. 18–35.

    Article  CAS  Google Scholar 

  3. Tian, X., Cheng, C., Yuan, H., Du, J., Xiao, D., Xie, S., and Choi, M.M.F., Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin-graphene-modified electrode by square wave voltammetry, Talanta, 2012, vol. 93, pp. 79–85.

    Article  CAS  PubMed  Google Scholar 

  4. Strohecker, R., Vitamin Assay Tested Methods, Weinhaim: Verlag Chemie, 1965.

    Google Scholar 

  5. British Pharmacopoeia Commision Secretariat, 2009.

  6. Grotzkyj, G.M., Howland, K., Martin, C., and Bonner, A.B., A novel HPLC method for the concurrent analysis and quantitation of seven water-soluble vitamins in biological fluids (plasma and urine): a validation study and application, Sci. World J., 2012, vol. 2012, p. 8.

    Google Scholar 

  7. Kucukkolbasi, S., Bilber, O., Ayyildiz, H.F., and Kara, H., Simultaneous and accurate determination of water- and fat-soluble vitamins in multivitamin tablets by using an RP-HPLC method, Química Nova, 2013, vol. 36, pp. 1044–1051.

    Article  CAS  Google Scholar 

  8. Özyürek, M., Güçlü, K., Bektaşoğlu, B., and Apak, R., Spectrophotometric determination of ascorbic acid by the modified CUPRAC method with extractive separation of flavonoids-La(III) complexes, Anal. Chim. Acta, 2007, vol. 588, no. 1, pp. 88–95.

    Article  CAS  PubMed  Google Scholar 

  9. Ball, G.F.M., Vitamin in Foods: Analysis Bioavailability and Stability, Taylor and Francis Group, 2006.

    Google Scholar 

  10. Pourmorad, F., Honary, S., Enayatifard, R., and Shahrbandi, S., Comparison between polarography and titrimetry methods for determination of ascorbic acid in pharmaceutical dosage forms, Boll Chim Farm, 2003, vol. 142, no. 7, pp. 295–297.

    CAS  PubMed  Google Scholar 

  11. Kit-Anan, W., Olarnwanich, A., Sriprachuabwong, C., Karuwan, C., Tuantranont, A., Wisitsoraat, A., Srituravanich, W., and Pimpin, A., Disposable paper-based electrochemical sensor utilizing inkjet-printed polyaniline modified screen-printed carbon electrode for ascorbic acid detection, J. Electroanal. Chem., 2012, vol. 685, pp. 72–78.

    Article  CAS  Google Scholar 

  12. Jurevičiūtė, I., Brazdžiuvienė, K., Bernotaitė, L., Šalkus, B., and Malinauskas, A., Polyaniline-modified electrode as an amperometric ascorbate sensor, Sens. Actuators B: Chem., 2005, vol. 107, no. 2, pp. 716–721.

    Article  CAS  Google Scholar 

  13. Kong, Y., Shan, X., Ma, J., Chen, M., and Chen, Z., A novel voltammetric sensor for ascorbic acid based on molecularly imprinted poly(o-phenylenediamine-co-o-aminophenol), Anal. Chim. Acta, 2014, vol. 809, pp. 54–60.

    Article  CAS  PubMed  Google Scholar 

  14. Gao, Z., Siow, K.S., Ng, A., and Zhang, Y., Determination of ascorbic acid in a mixture of ascorbic acid and uric acid at a chemically modified electrode, Anal. Chim. Acta, 1997, vol. 343, no. 1, pp. 49–57.

    Article  CAS  Google Scholar 

  15. Zhou, L., Gao, C., Xu, W., Wang, X., and Xu, Y., Enhanced biocompatibility and biostability of CdTe quantum dots by facile surface-initiated dendritic polymerization, Biomacromolecules, 2009, vol. 10, no. 7, pp. 1865–1874.

    Article  CAS  PubMed  Google Scholar 

  16. Xing, B., Li, W.-W., and Sun, K., A novel synthesis of high quality CdTe quantum dots with good thermal stability, Mater. Lett., 2008, vol. 62, no. 17, pp. 3178–3180.

    Article  CAS  Google Scholar 

  17. Zaiats, G., Shapiro, A., Yanover, D., Kauffmann, Y., Sashchiuk, A., and Lifshitz, E., Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots, J. Phys. Chem. Lett., 2015, vol. 6, no. 13, pp. 2444–2448.

    Article  CAS  PubMed  Google Scholar 

  18. Amelia, M., Lincheneau, C., Silvi, S., and Credi, A., Electrochemical properties of CdSe and CdTe quantum dots, Chem. Soc. Rev., 2012, vol. 41, no. 17, pp. 5728–5743.

    Article  CAS  PubMed  Google Scholar 

  19. Sobrova, P., Ryvolova, M., Hubalek, J., Adam, V., and Kizek, R., Voltammetry as a tool for characterization of CdTe quantum dots, Int. J. Molec. Sci.s, 2013, vol. 14, no. 7, p. 13497.

    Article  CAS  Google Scholar 

  20. Baslak, C., Aslan, E., Patir, I.H., Kus, M., and Ersoz, M., Photocatalytic hydrogen evolution based on mercaptopropionic acid stabilized CdS and CdTeS quantum dots, Int. J. Hydrogen Energy, 2016, vol. 41, vol. 45, pp. 20523–20528.

    Article  CAS  Google Scholar 

  21. Inamdar, S.N., Ingole, P.P., and Haram, S.K., Determination of band structure parameters and the quasiparticle gap of CdSe quantum dots by cyclic voltammetry, Chem. Phys. Chem., 2008, vol. 9, no. 17, pp. 2574–2579.

    Article  CAS  PubMed  Google Scholar 

  22. Pumera, M., Ambrosi, A., Bonanni, A., Chng, E.L.K., and Poh, H.L., Graphene for electrochemical sensing and biosensing, Trends Anal. Chem., 2010, vol. 29, no. 9, pp. 954–965.

    Article  CAS  Google Scholar 

  23. Cai, W., Lai, T., Du, H., and Ye, J., Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor, Sens. Actuators B: Chem., 2014, vol. 193, pp. 492–500.

    Article  CAS  Google Scholar 

  24. Han, Y., Zheng, J., and Dong, S., A novel nonenzymatic hydrogen peroxide sensor based on Ag-MnO2-MWCNTs nanocomposites, Electrochim. Acta, 2013, vol. 90, suppl. C, pp. 35–43.

    Article  CAS  Google Scholar 

  25. Kim, Y.-R., Bong, S., Kang, Y.-J., Yang, Y., Mahajan, R.K., Kim, J.S., and Kim, H., Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes, Biosens. Bioelectron., 2010, vol. 25, no. 10, pp. 2366–2369.

    Article  CAS  PubMed  Google Scholar 

  26. Piven, N., Susha, A.S., Döblinger, M., and Rogach, A.L., Aqueous synthesis of alloyed CdSexTe1 − x nanocrystals, J. Phys. Chem. C, 2008, vol. 112, no. 39, pp. 15253–15259.

    Article  CAS  Google Scholar 

  27. Baslak, C., Kus, M., Cengeloglu, Y., and Ersoz, M., A comparative study on fluorescence quenching of CdTe nanocrystals with a serial of polycyclic aromatic hydrocarbons, J. Luminescence, 2014, vol. 153, pp. 177–181.

    Article  CAS  Google Scholar 

  28. Hummers, W.S. and Offeman, R.E., Preperation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.

    Article  CAS  Google Scholar 

  29. Liang, W., Liu, S., Liu, Z., Li, D., Wang, L., Hao, C., and He, Y., Electron transfer and fluorescence “turnoff” based CdTe quantum dots for vancomycin detection at nanogram level in aqueous serum media, New J. Chem., 2015, vol. 39, no. 6, pp. 4774–4782.

    Article  CAS  Google Scholar 

  30. Dalkiran, B., Erden, P.E., and Kilic, E., Graphene and tricobalt tetraoxide nanoparticles based biosensor for electrochemical glutamate sensing, Artificial Cells Nanomed. Biotechnol., 2017, vol. 45, no. 2, pp. 340–348.

    Article  CAS  Google Scholar 

  31. Bijad, M., Karimi-Maleh, H., and Khalilzadeh, M.A., Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples, Food Anal. Methods, 2013, vol. 6, no. 6, pp. 1639–1647.

    Article  Google Scholar 

  32. Dalkiran, B., Kaçar, C., Erden, P.E., and Kiliç, E., Amperometric xanthine biosensors based on chitosan-Co3O4-multiwall carbon nanotube modified glassy carbon electrode, Sens. Actuators B: Chem., 2014, vol. 200, pp. 83–91.

    Article  CAS  Google Scholar 

  33. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 1980.

    Google Scholar 

  34. Asnaashariisfahani, M., Karimi-maleh, H., Ahmar, H., Ensafi, A.A., Fakhari, A.R., Khalilzadeh, M.A., and Karimi, F., Novel 8,9-dihydroxy-7-methyl-12H-ben-zothiazolo[2,3-b]quinazolin-12-one multiwalled carbon nanotubes paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan, Anal. Methods, 2012, vol. 4, no. 10, pp. 3275–3282.

    Article  CAS  Google Scholar 

  35. Cabrita, J.F., Ferreira, V.C., and Monteiro, O.C., Titanate nanofibers sensitized with nanocrystalline Bi2S3 as new electrocatalytic materials for ascorbic acid sensor applications, Electrochim. Acta, 2012, vol. 135, pp. 121–127. doi https://doi.org/10.1016/j.electacta.2014.04.135

    Article  CAS  Google Scholar 

  36. Apetrei, I.M. and Apetrei, C., The biocomposite screen-printed biosensor based on immobilization of tyrosinase onto the carboxyl functionalised carbon nanotube for assaying tyramine in fish products, J. Food Eng., 2015, vol. 149, pp. 1–8.

    Article  CAS  Google Scholar 

  37. Wang, C., Du, J., Wang, H., Zou Ce, Jiang, F., Yang, P., and Du, Y., A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid, Sens. Actuators B: Chem., 2014, vol. 204, pp. 302–309.

    Article  CAS  Google Scholar 

  38. Gheibi, S., Karimi-Maleh, H., Khalilzadeh, M.A., and Bagheri, H., A new voltammetric sensor for electrocatalytic determination of vitamin C in fruit juices and fresh vegetable juice using modified multi-wall carbon nanotubes paste electrode, J. Food Sci. Technol., 2015, vol. 52, no. 1, pp. 276–284.

    Article  CAS  Google Scholar 

  39. Karimi-Maleh, H., Moazampour, M., Yoosefian, M., Sanati, A.L., Tahernejad-Javazmi, F., and Mahani, M., An electrochemical nanosensor for simultaneous voltammetric determination of ascorbic acid and Sudan I in food samples, Food Anal. Methods, 2014, vol. 7, no. 10, pp. 2169–2176.

    Article  Google Scholar 

  40. Liu, B., Luo, L., Ding, Y., Si, X., Wei, Y., Ouyang, X., and Xu, D., Differential pulse voltammetric determination of ascorbic acid in the presence of folic acid at electro-deposited NiO/graphene composite film modified electrode, Electrochim. Acta, 2014, vol. 142, pp. 336–342.

    Article  CAS  Google Scholar 

  41. Gupta, V.K., Jain, A.K., and Shoora, S.K., Multiwall carbon nanotube modified glassy carbon electrode as voltammetric sensor for the simultaneous determination of ascorbic acid and caffeine, Electrochim. Acta, 2013, vol. 93, pp. 248–253.

    Article  CAS  Google Scholar 

  42. Fernandes, D.M., Costa, M., Pereira, C., Bachiller-Baeza, B., Rodríguez-Ramos, I., Guerrero-Ruiz, A., and Freire, C., Novel electrochemical sensor based on N-doped carbon nanotubes and Fe3O4 nanoparticles: simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid, J. Colloid Interface Sci., 2014, vol. 432, pp. 207–213.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Baslak.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucukkolbasi, S., Erdogan, Z.O., Baslak, C. et al. A Highly Sensitive Ascorbic Acid Sensor Based on Graphene Oxide/CdTe Quantum Dots-Modified Glassy Carbon Electrode. Russ J Electrochem 55, 107–114 (2019). https://doi.org/10.1134/S1023193519010051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519010051

Keywords

Navigation