Skip to main content
Log in

One-step preparation of carbon quantum dots-reduced graphene oxide nanocomposite–modified glass carbon electrode for the simultaneous detection of ascorbic acid, dopamine, and uric acid

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this manuscript, carbon quantum dots-reduced graphene oxide (CQDs-rGO) nanocomposite was modified on the surface of glass carbon electrode (GCE) via an one-step co-deposition method to fabricate an effective electrochemical senor for the simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). Due to the strong synergetic effect between CQDs and rGO, the sensor exhibited good selectivity and high catalytic activity toward AA, DA, and UA. The peak potential differences of simultaneous detection for AA-DA, DA-UA, and AA-UA were calculated as 0.147 V, 0.135 V, and 0.282 V, respectively. And the linear responses of AA, DA, and UA were found in the ranges of 0.2–0.9 mM (R2 = 0.99) and 1.4–4.2 mM (R2 = 0.99), 5–9 μM (R2 = 0.98) and 11–81 μM (R2 = 0.99), and 20–90 μM (R2 = 0.99) and 140–300 μM (R2 = 0.99), respectively. The as-prepared sensor contributed a fresh idea to the simultaneous detection of AA, DA, and UA, and has a broad prospect in practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang W, Liu L, Li Y, Wang D, Ma H, Ren H, Shi Y, Han Y, Ye B (2018) Electrochemical sensing platform based on the biomass-derived microporous carbons for simultaneous determination of ascorbic acid, dopamine, and uric acid. Biosens Bioelectron 121:96–103

    CAS  PubMed  Google Scholar 

  2. Moreno M, Arribas AS, Bermejo E, Chicharro M, Zapardiel A, Rodriguez MC, Jalit Y, Rivas GA (2018) Selective detection of dopamine in the presence of ascorbic acid using carbon nanotube modified screen-printed electrodes. Talanta 80(5):2149–2156

    Google Scholar 

  3. Chen H, Liu Y, Li H, Zhang Y, Yao S (2019) Non-oxidation reduction strategy for highly selective detection of ascorbic acid with dual-ratio fluorescence and colorimetric signals. Sensors Actuators B Chem 281:983–988

    CAS  Google Scholar 

  4. Rostami S, Mehdinia A, Jabbari A (2017) Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid. Spectrochim Acta A 180:204–210

    CAS  Google Scholar 

  5. Zhang L, Feng J, Chou K, Su L, Lei, Hou X (2017) Simultaneously electrochemical detection of uric acid and ascorbic acid using glassy carbon electrode modified with chrysanthemum-like titanium nitride. J Electroanal Chem 803:11–18

    CAS  Google Scholar 

  6. Mu C, Lu H, Bao J, Zhang Q (2018) Visual colorimetric ‘turn-off’ biosensor for ascorbic acid detection based on hypochlorite–3,3′,5,5′,-tetramethylbenzidine system. Spectrochim Acta A 201:61–66

    CAS  Google Scholar 

  7. Li X, Zhou C, Zi Q, Cao Q (2016) An electrochemical signal transduction amplification strategy for ultrasensitive detection of ascorbic acid. J Electroanal Chem 780:321–326

    CAS  Google Scholar 

  8. Tukimin N, Abdullah J, Sulaiman Y (2018) Electrodeposition of poly(3,4- ethylenedioxythiophene)/reduced graphene oxide/manganese dioxide for simultaneous detection of uric acid, dopamine and ascorbic acid. J Electroanal Chem 820:74–81

    CAS  Google Scholar 

  9. Chen Y, Zhang T, Gao X, Pan W, Li N, Tang B (2017) A highly selective and instantaneous upconversion fluorescent nanoprobe for ascorbic acid detection in biological samples. Chinese Chem Lett 28(10):1983–1986

    CAS  Google Scholar 

  10. Fang J, Xie Z, Wallace X, Wang X (2017) Co-deposition of carbon dots and reduced graphene oxide nanosheets on carbon-fiber microelectrode surface for selective detection of dopamine. Appl Surf Sci 412:131–137

    CAS  Google Scholar 

  11. Liu H, Li N, Zhang H, Zhang F, Su X (2018) A simple and convenient fluorescent strategy for the highly sensitive detection of dopamine and ascorbic acid based on graphene quantum dots. Talanta 189:190–195

    CAS  PubMed  Google Scholar 

  12. He Q, Liu J, Liu XP, Li G, Chen D, Deng P, Liang J (2019) A promising sensing platform toward dopamine using MnO2 nanowires/electro-reduced graphene oxide composites. Electrochim Acta. 296:683–692

    CAS  Google Scholar 

  13. Cai Z, Ye Y, Wan X, Liu J, Yang S, Xia Y, Li G, He Q (2019) Morphology-dependent electrochemical sensing properties of iron oxide–graphene oxide nanohybrids for dopamine and uric acid. Nanomaterials. 9:835

    CAS  PubMed Central  Google Scholar 

  14. Wan X, Yang S, Cai Z, He Q, Ye Y, Xia Y, Li G, Liu J (2019) Facile synthesis of MnO2 nanoflowers/N-doped reduced graphene oxide composite and its application for simultaneous determination of dopamine and uric acid. Nanomaterials. 9:847

    CAS  PubMed Central  Google Scholar 

  15. Zhang X, Ma L, Zhang Y (2015) Electrodeposition of platinum nanosheets on C60 decorated glassy carbon electrode as a stable electrochemical biosensor for simultaneous detection of ascorbic acid, dopamine and uric acid. Electrochim Acta 177:118–127

    CAS  Google Scholar 

  16. Rahman MM, Lopa NS, Ju ML, Lee J-J (2017) Highly sensitive and simultaneous detection of dopamine and uric acid at graphene nanoplatelet-modified fluorine-doped tin oxide electrode in the presence of ascorbic acid. J Electroanal Chem 792:54–60

    CAS  Google Scholar 

  17. Li Q, Xia Y, Wan X, Yang S, Cai Z, Ye YB, Li G (2020) Morphology-dependent MnO2/nitrogen-doped graphene nanocomposites for simultaneous detection of trace dopamine and uric acid. Mat Sci Eng C-Mater 109:110615

    CAS  Google Scholar 

  18. Li G, Xia Y, Tian Y, Wu Y, Liu J, He Q, Chen D (2019) Review-recent developments on graphene-based electrochemical sensors toward nitrite. J Electrochem Soc 166:881–895

    Google Scholar 

  19. Oghli AH, Soleymanpour A (2020) Polyoxometalate/reduced graphene oxide modified pencil graphite sensor for the electrochemical trace determination of paroxetine in biological and pharmaceutical media. Mat Sci Eng C-Mater. 108:110407

    CAS  Google Scholar 

  20. Mutyala S, Mathiyarasu J (2016) A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode. Mat Sci Eng C-Mater 69:398–406

    CAS  Google Scholar 

  21. Tan F, Cong L, Saucedo NM, Gao J, Li X, Mulchandani A (2016) An electrochemically reduced graphene oxide chemiresistive sensor for sensitive detection of Hg2+ ion in water samples. J Hazard Mater 320:226–233

    CAS  PubMed  Google Scholar 

  22. Kurt Urhan B, Demir Ü, Öznülüer ÖT, Öztürk Doğan H (2020) Electrochemical fabrication of Ni nanoparticles-decorated electrochemically reduced graphene oxide composite electrode for non-enzymatic glucose detection. Thin Solid Films 693:137695

    CAS  Google Scholar 

  23. Ghanbari MH, Khoshroo A, Sobati H, Ganjali MR, Rahimi-Nasrabadi M, Ahmadi F (2019) An electrochemical sensor based on poly (l-cysteine)@AuNPs @ reduced graphene oxide nanocomposite for determination of levofloxacin. Microchem J 147:198–206

    CAS  Google Scholar 

  24. Öztürk Doğan H, Kurt Urhan B, Çepni E, Eryiğit M (2019) Simultaneous electrochemical detection of ascorbic acid and dopamine on Cu2O/CuO/electrochemically reduced graphene oxide (CuxO/ERGO)- nanocomposite- modified electrode. Microchem J 150:104157

    Google Scholar 

  25. Hu L, Sun Y, Li S, Wang X, Hu K, Wang L, Liang X-J, Wu Y (2014) Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon 67:508–513

    CAS  Google Scholar 

  26. Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials. 33(13):3604–3613

    CAS  PubMed  Google Scholar 

  27. Shao K, Yang Y, Ye S, Gu D, Wang T, Teng Y, Shen Z, Pan Z et al (2020) Talanta 208:120460

    CAS  PubMed  Google Scholar 

  28. Guo W, Pi F, Zhang H, Sun J, Zhang Y, Sun X (2017) A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens Bioelectron 98:299–304

    CAS  PubMed  Google Scholar 

  29. Shereema RM, Rao TP, Sameer Kumar VB, Sruthi TV, Vishnu R, Prabhu GRD, Sharath Shankar S (2018) Individual and simultaneous electrochemical determination of metanil yellow and curcumin on carbon quantum dots based glassy carbon electrode. Mat Sci Eng C-Mater. 93:21–27

    CAS  Google Scholar 

  30. Hu S, Li X, Wang K, Wu Q, Zhang G, Liu X (2020) Sensor array based on carbon dots for ATP-related physiological phosphates detecting and ATP hydrolysis monitoring. Sensors Actuators B Chem 310:127851

    CAS  Google Scholar 

  31. Aftab S, Kurbanoglu S, Ozcelika G, Bakirhan NK, Shah A, Ozkan SA (2019) Carbon quantum dots co-catalyzed with multiwalled carbon nanotubes and silver nanoparticles modified nanosensor for the electrochemical assay of anti-HIV drug Rilpivirine. Sensors Actuators B Chem 285:571–583

    CAS  Google Scholar 

  32. Li L, Liu D, Shi A, You T (2018) Simultaneous stripping determination of cadmium and lead ions based on the N-doped carbon quantum dots-graphene oxide hybrid. Sensors Actuators B Chem 255:1762–1770

    CAS  Google Scholar 

  33. Chen D, Zhuang X, Zhai J, Zheng Y, Lu H (2018) Preparation of highly sensitive Pt nanoparticles-carbon quantum dots/ionic liquid functionalized graphene oxide nanocomposites and application for H2O2 detection. Sensors Actuators B Chem 255:1500–1506

    CAS  Google Scholar 

  34. Muthusankar G, Sethupathi M, Chen S, Devi RK, Vinoth R, Gopu G, Anandhan N (2019) N, N-doped carbon quantum dots @ hexagonal porous copper oxide decorated multiwall carbon nanotubes: a hybrid composite material for an efficient ultra-sensitive determination of caffeic acid. Compos Part B-Eng 174:106973

    CAS  Google Scholar 

  35. Wei Y, Zhang D, Fang Y, Wang H, Liu Y, Xu Z, Wang S, Guo Y (2019) Detection of ascorbic acid using green synthesized carbon quantum dots. J Sensors 2019:1–10

    Google Scholar 

  36. Zhang D, Li L, Ma W, Chen X, Zhang Y (2017) Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Mat Sci Eng C-Mater 70:241–249

    CAS  Google Scholar 

  37. Baytak AK, Aslanoglu M (2020) A novel sensitive method for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan using a voltammetric platform based on carbon black nanoballs. Arab J Chem 13:1702–1711

    CAS  Google Scholar 

  38. Puangjan A, Chaiyasith S, Taweeporngitgul W, Keawtep J (2017) Application of functionalized multi-walled carbon nanotubes supporting cuprous oxide and silver oxide composite catalyst on copper substrate for simultaneous detection of vitamin B2, vitamin B6 and ascorbic acid. Mat Sci Eng C-Mater 76:383–397

    CAS  Google Scholar 

  39. Sun D, Li H, Li M, Li C, Dai H, Sun D, Yang B (2018) Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sensors Actuators B Chem 259:433–442

    CAS  Google Scholar 

  40. Rohani T, Taher MA (2018) Novel functionalized multiwalled carbon nanotube-glassy carbon electrode for simultaneous determination of ascorbic acid and uric acid. Arab J Chem 11(2):214–220

    CAS  Google Scholar 

  41. Zhang X, Zhang Y, Ma L (2016) One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 227:488–496

    CAS  Google Scholar 

  42. Niu X, Yang W, Guo H, Ren J, Yang F, Gao J (2012) A novel and simple strategy for simultaneous determination of dopamine, uric acid and ascorbic acid based on the stacked graphene platelet nanofibers/ionic liquids/chitosan modified electrode. Talanta. 99:984–988

    CAS  PubMed  Google Scholar 

  43. Selvarajan S, Suganthi A, Rajarajan M (2017) A facile approach to synthesis of mesoporous SnO2/chitosan nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Surf Interfaces 7:146–156

    CAS  Google Scholar 

  44. Zhu Q, Bao J, Huo D, Yang M, Hou C, Guo J, Chen M, Fa H, Luo X, Ma Y (2017) 3D graphene hydrogel-gold nanoparticles nanocomposite modified glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 238:1316–1323

    CAS  Google Scholar 

  45. Xie Y, Yuan J, Ye H, Song P, Hu S (2015) Facile ultrasonic synthesis of graphene/SnO2 nanocomposite and its application to the simultaneous electrochemical determination of dopamine, ascorbic acid, and uric acid. J Electroanal Chem 749:26–30

    CAS  Google Scholar 

  46. Yang H, Zhao J, Qiu M, Sun P, Han D, Niu L, Cui G (2019) Hierarchical bi-continuous Pt decorated nanoporous Au-Sn alloy on carbon fiber paper for ascorbic acid, dopamine and uric acid simultaneous sensing. Biosens Bioelectron 124-125:191–198

    CAS  PubMed  Google Scholar 

  47. Savk A, Özdil B, Demirkan B, Nas MS, Calimli MH, Alma MH, Inamuddin, Asiri AM, Şen F (2019) Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. Mat Sci Eng C-Mater 99:248–254

    CAS  Google Scholar 

Download references

Funding

Financial supports from the National Natural Science Foundation of China (Grant Nos. 81973944, 81503636, and 81704146) and the National S&T Major Project (No. 2018ZX09201011) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Zhang or Yuxin Fang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Xu, Z., Wang, S. et al. One-step preparation of carbon quantum dots-reduced graphene oxide nanocomposite–modified glass carbon electrode for the simultaneous detection of ascorbic acid, dopamine, and uric acid. Ionics 26, 5817–5828 (2020). https://doi.org/10.1007/s11581-020-03703-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03703-5

Keywords

Navigation