Skip to main content
Log in

Kinetics, Mechanistic and Theoretical Studies on Scavenging Activities of Antioxidants Using 1,2-Dinitrobenzene DNB/DNB•− and DNB/DNB2– Model Systems: Cyclic Voltammetric and Quantum Semi-Empirical Data Interpretation

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Here we are presenting complete electrochemical studies on redox activities of 1,2-dinitrobenzene (DNB) in the presence of antioxidants–quercetin, morin, rutin, ascorbic acid and β-carotene. Bimolecular rate constants (k2), antioxidant activities (Ka) and diffusion coefficients (Do) were evaluated from changes in voltammeric responses and electrochemical parameters in the presence of antioxidant’s concentrations. Theoretical charge calculations by PM3 parameterization were done which further justified our experimental electrochemical work and proposed scavenging mechanism. Present findings were also compared in details with our previously reported studies on 1,3- and 1,4-dinitrobenzene systems for their interactions with antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lobo, V., Patil, A., Phatak, A., and Chandra, N., Free radicals, antioxidants and functional foods: impact on human health, Pharmacogn. Rev., 2010, vol. 4, no. 8, p. 118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vaya, J. and Aviram, M., Nutritional antioxidants mechanisms of action, analysis of activities and medical applications, Curr. Med. Chem. Immunol. Endocr. Met. Agents, 2001, vol. 1, no. 1, p. 99.

    Article  CAS  Google Scholar 

  3. Fridovich, I., The biology of oxygen radicals, Science, 1978, vol. 201, no. 4359, p. 875.

    Article  CAS  PubMed  Google Scholar 

  4. Nohl, H., Jordan, W., and Dietmer, H., Identification of free hydroxyl radicals in respiring rat heart mitochondria by spin trapping with the nitrone DMPO, FEBS Lett., 1981, vol. 123, no. 2, p. 241.

    Article  CAS  PubMed  Google Scholar 

  5. Bors, W., Michel, C., and Stettmaier K., Antioxidant effects of flavonoids, Bio-Factors, 1997, vol. 6, no. 4, p. 399.

    CAS  Google Scholar 

  6. Nunomura, A., Castellani, R.J., Zhu, X., Moreira, P., Perry, G., and Smith, M.A., Involvement of oxidative stress in Alzheimer disease, J. Neuropathol. Exp. Neurol., 2006, vol. 65, no. 7, p. 631.

    Article  CAS  PubMed  Google Scholar 

  7. Kaczmar, A.W., Gandhi, S., and Wood, N.W., Understanding the molecular causes of Parkinson’s disease, Trends Mol. Med., 2006, vol. 12, no. 11, p. 521.

    Article  CAS  Google Scholar 

  8. Hitchon, C.A. and El-Gabalawy, H.S., Review: oxidation in rheumatoid arthritis, Arthritis Res. Ther., 2004, vol. 6, p. 265.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M., and Telser, J., Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol., 2007, vol. 39, no. 1, p. 44.

    Article  CAS  PubMed  Google Scholar 

  10. Van, G. L.F., Mertens, I.L., and De-Block, C.E., Mechanisms linking obesity with cardiovascular disease, Nature, 2006, vol. 444, no. 7121, p. 875.

    Article  CAS  Google Scholar 

  11. Fereshteh, A., Simon, G.M., Morteza, H.C., Gholamreza, B., and Mohammad, S.J., Review: molecular mechanisms behind free radical scavengers function against oxidative stress, Antioxidants, 2017, vol. 6, p. 51.

    Article  CAS  Google Scholar 

  12. Satish, B.N. and Dilipkumar, P., Review: free radicals, natural antioxidants, and their reaction mechanisms, RSC Adv., 2015, vol. 5, p. 27986.

    Article  CAS  Google Scholar 

  13. Anu, R.A.K., Vivek, S., Brijesh, Y., Ruchi, T., Sandip, C., and Kuldeep, D., Review article: oxidative stress, prooxidants, and antioxidants: the interplay, Biomed. Res. Int., 2014, vol. 2014, p. 761264.

    Google Scholar 

  14. Haiying, F., Mingzhang, L., Yusa, M., Kuniki, H., Yosuke, K., Akinari, Y., Naoya, S., and Yoshihiko, H., Free radical scavenging reactions and antioxidant activities of silybin: mechanistic aspects and pulse radiolytic studies, Free Radic. Res., 2009, vol. 43, no. 9, p. 887.

    Article  CAS  Google Scholar 

  15. Nasima, A., Naveed, K.J., Athar, Y.K., Javeed, H.Z., and Leif, H.S., Electrochemical studies of interactional mechanism and scavenging activity of antioxidants towards dinitroaromatics, Montash. Chem., 2012, vol. 143, p. 377.

    Article  CAS  Google Scholar 

  16. Nasima, A., Naveed, K.J., Athar, Y.K., Azra, Y., Torsten, B., and Claus, J., Natural flavonoids interact with dinitrobenzene system in aprotic media: an electrochemical probing, Nat. Prod. Commun., 2012, vol. 7, no. 3, p. 311.

    Google Scholar 

  17. Nasima, A., Naveed, K.J., Safeer, A., Athar, Y.K., and Leif, H.S., Electrochemical investigations of antioxi-dant interactions with anion-radicaland dianion of 1,3-dinitrobenzene, Electrochem. Acta, 2009, vol. 54, p. 6184.

    Article  CAS  Google Scholar 

  18. Ai-Hong, Y., Xue-Ying, S., Xue, L., Fang-Fang, L., Qin-Qin, Z., Shu-Xin, J., Jian-Zhong, C., and Hongling, G., Spectroscopic and electrochemical studies on the evaluation of the radical scavenging activities of luteolin by chelating iron, RSC Adv., 2014, vol. 48, p. 25227.

    Google Scholar 

  19. Agarwal, A., Environmental toxicants and testicular apoptosis, Open Reprod. Sci. J., 2011, vol. 3, no. 1, p. 114.

    Article  CAS  Google Scholar 

  20. Farzana, H., Ghazala, Y., Rashida, P., and Muhammad, A., Protonation reaction of anion radicals of some dinitroaromatics in hexamethylphosphortriamide (HMPA), J. Chem. Soc. Pak., 2014, vol. 36, no. 3, p. 422.

    Google Scholar 

  21. Syroeshkin, M.A., Mendkovich, A.S., Mikhal’chenko, L.V., and Gul’tyai, V.P., The nature of associates of 1,4-dinitrobenzene dianion with 1butyl3methylimidazolium and 1butyl2,3dimethylimidazolium cations, Russ. Chem. Bull. Int. Ed., 2009, vol. 58, no. 8, p. 1688.

    Article  CAS  Google Scholar 

  22. Ruvalcaba, M.N.A., Gonzalez, I., and Martinez, M.A., Evolution from hydrogen bond to proton transfer pathways in the electroreduction of α-NH-Quinones in acetonitrile, J. Electrochem. Soc., 2004, vol. 151, no. 3, p. e110.

    Article  CAS  Google Scholar 

  23. Leonor, C.C., Martin, S.L., and Smith, D.K., Electrochemically controlled hydrogen bonding. redoxdependent formation of a 2:1 diarylurea/dinitrobenzene2–complex, J. Org. Chem., 2005, vol. 70, p. 10817.

    Article  CAS  Google Scholar 

  24. Mendkovich, A.S., Syroeshkin, M.A., Mikhalchenko, L.V., Mikhailov, M.N., Rusakov, A.I., and Gul’tyai, V.P., Integrated study of the dinitrobenzene electroreduction mechanism by electroanalytical and computational methods, Int. J. Electrochem., 2011, vol. 2011, 12 p.

    Google Scholar 

  25. Nasima, A., Moazzam, H.B., Shahid, I.F., Samreen, S., and Bushra, M., Synthesis, photochemical and electrochemical studies on triphenyltin(IV) derivative of (Z)-4-(4-cyanophenylamino)-4-oxobut-2-enoic acid for its binding with DNA: biological interpretation, Arab. J. Chem., 2016, vol. 9, no. 3, p. 451.

    Google Scholar 

  26. Nasima, A., Mukhtar, A., Muhammad, Z.A., and Humaira, N., Spectroscopic, electrochemical DNA binding and in vivo anti-inflammatory studies on newly synthesized Schiff bases of 4-aminophenazone, J. Photochem. Photobiol. B: Biol., 2014, vol. 138, p. 331.

    Article  CAS  Google Scholar 

  27. Wang, J., Analytical Chemistry, VCH, 1994, chapt. 6, p. 166.

    Google Scholar 

  28. Niranjana, E., Naik, R.R., Swamy, K.B.E., Bodke, Y.D., Sherigara, B.S., Jayadevappa, H., and Badami, B.V., Cyclic voltammetric investigations of 3-aryl-4-bromo sydnone and its derivatives at glassy carbon electrode, Int. J. Electrochem. Sci., 2008, vol. 3, p. 980.

    CAS  Google Scholar 

  29. Grimshaw, J., Electrochemical Reactions and Mechanisms in Organic Chemistry, Elsevier, 2000.

    Google Scholar 

  30. Mohammad, M., Khan, A.Y., Begum, W., Ashraf, N., Qurashi, R., and Iqbal, R., Protonation of anion radicals and dianions of some dinitro aromatics, Res. Chem. Intermed., 1991, vol. 16, no. 1, p. 29.

    Article  CAS  Google Scholar 

  31. Nicholson, R.S. and Shain, I., Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 1964, vol. 36, p. 706.

    Article  CAS  Google Scholar 

  32. Miller, N.E., Wander, M.C., and Cave, R.J., A theoretical study of the electronic coupling element for electron transfer in water, J. Phys. Chem. A, 1999, vol. 103, p. 1084.

    Article  CAS  Google Scholar 

  33. Sawyer, D.T., Experimental Electrochemistry for Chemists, Wiley, 1974, p. 170.

    Google Scholar 

  34. Gómez, M., González, F.J., and González, I., Intra and intermolecular hydrogen bonding effects in the electrochemical reduction of α-phenolic-naphthoquinones, J. Electroanal. Chem., 2005, vol. 578, no. 2, p. 193.

    Article  CAS  Google Scholar 

  35. Korotkova, E.I., Avramchik, O.A., Kagiya, T.V., Karbainov, Y.A., and Tcherdyntseva, N.V., Study of antioxidant properties of a water-soluble vitamin E derivative-tocopherol monoglucoside (TMG) by differential pulse voltammetry, Talanta, 2004, vol. 63, no. 3, p. 729.

    Article  CAS  PubMed  Google Scholar 

  36. Ziyatdinova, G.K., Budnikov, H.C., and Pogorel’tzev, V.I., Electrochemical determination of the total antioxidant capacity of human plasma, Anal. Bioanal. Chem., 2005, vol. 381, p. 1546.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Arshad.

Additional information

Published in Russian in Elektrokhimiya, 2019, Vol. 55, No. 2, pp. 191–213.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, N., Janjua, N.K. Kinetics, Mechanistic and Theoretical Studies on Scavenging Activities of Antioxidants Using 1,2-Dinitrobenzene DNB/DNB•− and DNB/DNB2– Model Systems: Cyclic Voltammetric and Quantum Semi-Empirical Data Interpretation. Russ J Electrochem 54, 1252–1273 (2018). https://doi.org/10.1134/S1023193518140021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518140021

Keywords

Navigation