Skip to main content
Log in

Oxygen Electroreduction Catalysts Based on Polymer Complexes of Nickel with Schiff Bases

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In energy-storage systems such as fuel cells and metal-air batteries, the main current-forming process is the reaction of oxygen electroreduction (OER). A simple method is proposed for synthesizing OER catalysts based on polymer complexes of transition metals (nickel, palladium) with Schiff bases prepared by electrochemical polymerization of starting monomers. The OER catalysts are prepared by thermolysis of polymers in inert atmosphere. Their properties are characterized by the methods of cyclic voltammetry with the use of a rotating disk electrode. The surface state (the catalyst film density, the size and composition of particles) is controlled by scanning electron microscopy with X-ray microanalysis. The electrode demonstrates the high catalytic activity in the oxygen electroreduction reaction in alkaline solutions (higher than 750 mA/mg of the initial polymer mass).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nie, Y., Li, L., and Wei, Z., Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chem. Soc. Rev, 2015, vol. 44, p. 2168.

    Article  CAS  PubMed  Google Scholar 

  2. Bagotzky, V.S., Tarasevich, M.R., Radyuskina, K.A., Levina, O.A., and Andrusyova, S.I., Electrocatalysis of the oxygen reduction process on metal chelates in acid electrolyte, J. Power Sources, 1977/78, vol. 2, p. 233.

    Google Scholar 

  3. Gupta, S., Tryk, D., Bae, I., Aldred, W., and Yeager, E., Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction, J. Appl. Electrochem., 1989, vol. 19, p. 19.

    Article  CAS  Google Scholar 

  4. Tarasevich, M.R., Beketaeva, L.A., Efremov, B.N., Zagudaeva, N.M., Kuznetsova, L.N., Rybalka, K.V., and Sosenkin, V.E., Electrochemical properties of carbon black AD-100 and AD-100 promoted with pyropolymer of cobalt tetra (p-methoxyphenyl) porphyrin, Russ. J. Electrochem., 2004, vol. 40, p. 542.

    Article  CAS  Google Scholar 

  5. Nallathambi, V., Lee, J.-W., Kumaraguru, S.P., Wu, G., and Popov, B.N., Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells, J. Power Sources, 2008, vol. 183, p. 34.

    Article  CAS  Google Scholar 

  6. Lefèvre, M., Proietti, E., Jaouen, F., and Dodelet, J.-P., Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells, Science, 2009, vol. 324, p. 71.

    Article  CAS  PubMed  Google Scholar 

  7. Kramm, U.I., Lefèvre, M., Larouche, N., Schmeisser, D., and Dodelet, J.-P, Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques, J. Am. Chem. Soc., 2014, vol. 136, no. 3, p. 978.

    Article  CAS  PubMed  Google Scholar 

  8. Du, J., Cheng, F.Y., Wang, S.W., Zhang, T.R., and Chen, J., M (Salen)-derived nitrogen-doped M/C (M = Fe, Co, Ni) porous nanocomposites for electrocatalytic oxygen reduction, Sci. Rep., 2014, vol. 4, p. 4386.

    CAS  PubMed  Google Scholar 

  9. Rojas-Carbonell, S., Santaro, C., Serov, A., and Atanassov, P., Transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in neutral electrolyte, Electrochem. Commun., 2017, vol. 75, p. 38.

    Article  CAS  Google Scholar 

  10. Wu, G., Current challenge and perspective of PGMfree cathode catalysts for PEM fuel cells, Front. Energy, 2017, vol. 11, no. 3, p. 286.

    Article  Google Scholar 

  11. Thippani, T., Mandal, S., Wang, G., Ramani, V.K., and Kothandaraman, R., Probing oxygen reduction and oxygen evolution reactions on bifunctional nonprecious metal catalysts for metal–air batteries, RSC Adv., 2016, vol. 6, no. 75, p. 71122.

    Article  CAS  Google Scholar 

  12. Huang, Y., Cui, F., Zhao, Y., Bao, J., Lian, J., Xu, Y., Liu, T., and Li, H., Controllable synthesis of ultra-thin NiCo2O4 nanosheet incorporated composite nanotubes towards efficient oxygen reduction, Chem.–Asian J., 2017.

    Google Scholar 

  13. Wu, R., Wang, J., Chen, K., Chen, S., Li, J., Wang, Q., Nie, Y., Song, Y., Chen, H., and Wei, Z., Space-confined pyrolysis for the fabrication of Fe/N/C nanoparticles as a high performance oxygen reduction reaction electrocatalyst, Electrochim. Acta, 2017, vol. 244, p. 47.

    Article  CAS  Google Scholar 

  14. Wu, G., More, K.L., Johnston, C.M., and Zelenay P., High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science, 2011, vol. 332, p. 443.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, P., Sun, F., Xiang, Z., Shen, Z., Yun, J., and Cao, D., ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction, Energy Environ. Sci., 2014, vol. 7, no. 1, p. 442.

    Article  CAS  Google Scholar 

  16. Wu, Z.S., Chen, L., Liu, J., Parvez, K., Liang, H., Shu, J., Sachdev, H., Graf, R., Feng, X., and Mullen, K., High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers, Adv. Mater., 2013, vol. 26, p.1450.

    Google Scholar 

  17. Lee, J.S., Park, G.S., Kim, S.T., Liu, M., and Cho, J., A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam, Angew. Chem., 2013, vol.125, no. 3, p. 1060.

    Google Scholar 

  18. Wu, G., Johnston, C.M., Mack, N.H., Artyushkova, K., Ferrandon, M., Nelson, M., Lezama-Pacheco, J.S., Conradson, S.D., More, K.L., Myers, D.J., and Zelenay, P., Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells, J. Mater. Chem., 2011, vol. 21, no. 30, p. 11392.

    Article  CAS  Google Scholar 

  19. Ai, K., Liu, Y., Ruan, C., Lu, L., and Lu, G., Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: A versatile platform for highly efficient oxygen-reduction catalysts, Adv. Mater., 2013, vol. 25, no. 7, p. 998.

    Article  CAS  PubMed  Google Scholar 

  20. Novozhilova, M.V., Smirnova, E.A., Karushev, M.P., Timonov, A.M., Malev, V.V., and Levin, O.V., Synthesis and study of catalysts of electrochemical oxygen reduction reaction based on polymer complexes of nickel and cobalt with Schiff bases, Russ. J. Electrochem., 2016, vol. 52, no. 12, p. 1183.

    Article  CAS  Google Scholar 

  21. Popeko, I.E., Vasil’ev, V.V., Timonov, A.M., and Shagisultanova, G.A., Electrochemical behavior of palladium(II) complexes with Schiff-bases and synthesis of Pd(II)–Pd(IV) mixed-ligand complex, Zh. Neorg. Khim., 1990, vol. 35, no. 4, p. 933.

    CAS  Google Scholar 

  22. Erikson, H., Sarapuu, A., Solla-Gullón, J., and Tammeveski, K., Recent progress in oxygen reduction electrocatalysis on Pd-based catalysts, J. Electroanal. Chem., 2016, vol. 780, p. 327.

    Article  CAS  Google Scholar 

  23. Vecchio, C., Alegre, C., Sebastián, D., Stassi, A., Aricò, S., and Baglio, V., Investigation of supported Pd-based electrocatalysts for the oxygen reduction reaction: performance, durability and methanol tolerance, Materials, 2015, no. 8, p. 7997.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Venarusso, L., Bettini, J., and Maia, G., Superior catalysts for oxygen reduction reaction based on porous nanostars of a Pt, Pd, or Pt–Pd alloy shell supported on a gold core, ChemElectroChem., 2016, vol. 3, no. 5, p. 749.

    CAS  Google Scholar 

  25. Krasikova, S.A., Besedina, M.A., Karushev, M.P., Dmitrieva, E.A., and Timonov, A.M., In situ electrochemical microbalance studies of polymerization and redox processes in polymeric complexes of transition metals with Schiff bases, Russ. J. Electrochem., 2010, vol. 46, no. 2, p. 218.

    Article  CAS  Google Scholar 

  26. Koutecky, J. and Levich, V.G., The application of the rotating disc electrode to studies of kinetic and catalytic processes, Zh. Fiz. Khim., 1958, vol. 32, no. 7, p. 1565.

    CAS  Google Scholar 

  27. Cai, P., Ci, S., Zhang, E., Shao, P., Cao, C., and Wen, Z., FeCo alloy nanoparticles confined in carbon layers as high-activity and robust cathode catalyst for Zn–Air battery, Electrochim. Acta, 2016, vol. 220, p. 354.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Levin.

Additional information

Original Russian Text © M.V. Novozhilova, Yu.S. Danilova, M.P. Karushev, A.M. Timonov, V.V. Malev, O.V. Levin, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 10, pp. 879–884.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novozhilova, M.V., Danilova, Y.S., Karushev, M.P. et al. Oxygen Electroreduction Catalysts Based on Polymer Complexes of Nickel with Schiff Bases. Russ J Electrochem 54, 769–774 (2018). https://doi.org/10.1134/S102319351810004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351810004X

Keywords

Navigation