Skip to main content
Log in

Formation of Bilayer Thin-Film Electrolyte on Cathode Substrate by Electrophoretic Deposition

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Potentialities of the method of bilayer thin-film electrolyte electrophoretic deposition onto cathodic substrate are analyzed. Ce0.8Sm0.2O1.9–δ (SDC) nanopowder and BaCe0.89Gd0.1Cu0.01O3–δ BCGCuO) micropowder are prepared by the methods of laser evaporation–condensation and pyrolysis, respectively. The effect of ultrasonic treatment on the SDC and BCGCuO particle distribution in suspensions and their electrokinetic properties are studied. The using of the ultrasonic treatment combined with centrifugation allowed obtaining an aggregative-stable suspension of the BaCe0.89Gd0.1Cu0.01O3–δ micron particles in the isopropanol–acetylacetone mixed medium (70/30 v/v) that is characterized by high zeta potential. Ce0.8Sm0.2O1.9–δ and BaCe0.89Gd0.1Cu0.01O3–δ thin films are obtained at the La2NiO4 +δ cathode substrate using electrophoretic deposition; microstructure and electric properties of the prepared thin-film structures are studied. The conductivity and electric properties of the bilayer electrolyte were found to be determined by the Ce0.8Sm0.2O1.9–δ film properties. Despite the sintering high temperature, the grain structure of the BaCe0.89Gd0.1Cu0.01O3–δ film is underdeveloped; this is determined by the micron powder properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kendall, K., High-Temperature Solid Oxide Fuel Cells for the 21st Century. Fundamentals, Design and Applications (2nd Ed.), Elsevier, 2015.

    Google Scholar 

  2. Hossain, S., Abdalla, A.M., Jamain, S.N.B., Zaini, J.H., and Azad, A.K., A review on proton conducting electrolytes for clean energy and intermediate temperaturesolid oxide fuel cells, Renew. Sust. Energy Rev., 2017, vol. 79, p. 750–764.

    Article  CAS  Google Scholar 

  3. Mogensen, M., Sammes, N.M., and Tompsett, G.A., Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics, 2000, vol. 129, p. 63–94.

    Article  CAS  Google Scholar 

  4. Pikalova, E.Yu., Kolchugin, A.A., and Bamburov, V.G., Ceria based materials for high temperature electrochemistry applications, Int. J. Energy Prod. Management, 2016, vol. 1, p. 272–283.

    Google Scholar 

  5. Sumi, H., Kennouche, D., Yakai-Kremski, K., Suzuki, T., Barnett, S.A., Miller, D.J., Yamaguchi, T., Hamamoto, K., and Fujishiro, Y., Electrochemical and microstructural properties of Ni–(Y2O3)0.08(ZrO2)0.92–(Ce0.9Gd0.1)O1.95 anode-supported microtubular solid oxide fuel cells, Solid State Ionics, 2016, vol. 285, p. 227–233.

    Article  CAS  Google Scholar 

  6. Matsui, T., Kosaka, T., Inaba, M., Mineshige, A., and Ogumi, Z., Effects of mixed conduction on the opencircuit voltage of distribution SOFCs based on Smdoped ceria electrolytes, Solid State Ionics, 2005, vol. 176, p. 663–668.

    Article  CAS  Google Scholar 

  7. Pikalova, E.Yu., Bamburov, V.G., Murashkina, A.A., Neuimin, A.D., Demin, A.K., and Plaksin, S.V., Solid electrolytes based on CeO2 for medium-temperature electrochemical devices, Russ. J. Electrochem., 2011, vol. 47, p. 690–696.

    Article  CAS  Google Scholar 

  8. Mori, T., Drennan, J., Wang, Y., Lee, J.-H., Li, J.-G., and Ikegami, T., Electrolytic Properties and Nanostructural Features in the La2O3–CeO2 System, J. Electrochem. Soc., 2003, vol. 150, p. A665–A673.

    Article  CAS  Google Scholar 

  9. Medvedev, D., Maragou, V., Pikalova, E., Demin, A., and Tsiakaras, P., Novel composite solid state electrolytes on the base of BaCeO3 and CeO2 for intermediate temperature electrochemical devices, J. Power Sources, 2013, vol. 221, p. 217–227.

    Article  CAS  Google Scholar 

  10. Cao, J., Gong, Z., Fan, C., Ji, Y., and Liu, W., The improvement of barium-containing anode for ceriabased electrolyte with electron-blocking layer, J. Alloys Compd., 2017, vol. 693, p. 1068–1075.

    Article  CAS  Google Scholar 

  11. Sumi, H., Suda, E., and Mori, M., Blocking layer for prevention of current leakage for reversible solid oxide fuel cells and electrolysis cells with ceria-based electrolyte, Int. J. Hydrogen Energy, 2017, vol. 42, p. 4449–4455.

    Article  CAS  Google Scholar 

  12. Sun, W., Shi, Zh., Wang, Zh., Liu, W., Bilayered BaZr0.1Ce0.7Y0.2O3–δ/Ce0.8Sm0.2O2–δ electrolyte membranes for solid oxide fuel cells with high open circuit voltages, J. Membrane Sci., 2015, vol. 476, p. 394–398.

    Article  CAS  Google Scholar 

  13. Kalinina, E.G., Pikalova, E.Yu., Menshikova, A.V., and Nikolaenko, I.V., Electrophoretic deposition of a self-stabilizing suspension based on a nanosized multicomponent electrolyte powder prepared by the laser evaporation method, Solid State Ionics, 2016, vol. 288, p. 110–114.

    Article  CAS  Google Scholar 

  14. Kalinina, E.G., Pikalova, E.Yu., Kolchugin, A.A., Pikalov, S.M., and Kaigorodov, A.S., Cyclic electrophoretic deposition of electrolyte thin-films on the porous cathode substrate utilizing stable suspensions of nanopowders, Solid State Ionics, 2017, vol. 302, p. 126–132.

    Article  CAS  Google Scholar 

  15. Sun, W., Liu, M., and Liu, W., Chemically Stable Yttrium and Tin Co-Doped Barium Zirconate Electrolyte for Next Generation High Performance Proton- Conducting Solid Oxide Fuel Cells, Adv. Energy Mater. 2013, vol. 3, p. 1041–1050.

    Article  CAS  Google Scholar 

  16. Dubal, S.U., Bhosale, C.H., and Jadhav, L.D., Performance of spray deposited Gd-doped barium cerate thin films for proton conducting SOFCs, Ceram. Int., 2015, vol. 41, p. 5607–5613.

    Article  CAS  Google Scholar 

  17. Dunyushkina, L.A, Pankratov, A.A., Gorelov, V.P., Brouzgou, A., and Tsiakaras, P., Deposition and Characterization of Y-doped CaZrO3 Electrolyte Film on a Porous SrTi0.8Fe0.2O3–δ Substrate, Electrochim. Acta, 2016, vol. 202, p. 39–46.

    Article  CAS  Google Scholar 

  18. Marrony, M., Ancelin, M., Lefevre, G., and Dailly, J., Elaboration of intermediate size planar proton conducting solid oxide cell by wet chemical routes: A way to industrialization, Solid State Ionics, 2015, vol. 275, p. 97–100.

    Article  CAS  Google Scholar 

  19. Medvedev, D., Lyagaeva, J., Vdovin, G., Beresnev, S., Demin, A., and Tsiakaras, P., A tape calendering method as an effective way for the preparation of proton ceramic fuel cells with enhanced performance, Electrochim. Acta, 2016, vol. 210, p. 681–688.

    Article  CAS  Google Scholar 

  20. Besra, L. and Liu, M., A review on fundamentals and applications of electrophoretic deposition (EPD), Progr. Mater. Sci., 2007, vol. 52, p. 1–61.

    Article  CAS  Google Scholar 

  21. Bhosale, A.G., Kadam, M.B., Rajeev, J., Pawar, S.S., and Pawar, S.H., Studies on electrophoretic deposition of nanocrystalline SDC electrolyte films, J. Alloys Compd., 2009, vol. 484, p. 795–800.

    Article  CAS  Google Scholar 

  22. Talebi, T., Raissi, B., and Maghsoudipour, A., The role of addition of water to non-aqueous suspensions in electrophoretically deposited YSZ films for SOFCs, Int. J. Hydrogen Energy., 2010, vol. 35, p. 9434–9439.

    Article  CAS  Google Scholar 

  23. Guo, F., Javed, A., Shapiro, I.P., and Xiao, P., Effect of HCl concentration on the sintering behavior of 8 mol % Y2O3 stabilized ZrO2 deposits produced by electrophoretic deposition (EPD), J. European Ceram. Soc., 2012, vol. 32, p. 211–218.

    Article  CAS  Google Scholar 

  24. Das, D., Bagchi, B., and Basu, R.N., Nanostructured zirconia thin film fabricated by electrophoretic deposition technique, J. Alloys Compd., 2017, vol. 693, p. 1220–1230.

    Article  CAS  Google Scholar 

  25. Kalinina, E.G., Safronov, A.P., and Kotov, Yu.A., Formation of thin YSZ electrolyte films by electrophoretic deposition on porous cathodes, Russ. J. Electrochem, 2011, vol. 47, p. 671–675.

    Article  CAS  Google Scholar 

  26. Kalinina, E.G., Efimov, A.A., and Safronov, A.P., The influence of nanoparticle aggregation on formation of ZrO2 electrolyte thin films by electrophoretic deposition, Thin Solid Films, 2016, vol. 612, p. 66.

    Article  CAS  Google Scholar 

  27. Kalinina, E.G., Samatov, O.M., and Safronov, A.P., Stable Suspensions of Doped Ceria Nanopowders for Electrophoretic Deposition of Coatings for Solid Oxide Fuel Cells, Inorg. Mater., 2016, vol. 52, p. 858–864.

    Article  CAS  Google Scholar 

  28. Pikalova, E.Yu., Nikonov, A.V., Zhuravlev, V.D., Bamburov, V.G., Samatov, O.M., Lipilin, A.S., Khrustov, V.R., Nikolaenko, I.V., Plaksin, S.V., and Molchanova, N.G., Effect of the synthesis technique on the physicochemical properties of Ce0.8(Sm0.75Sr0.2Ba0.05)0.2O2–δ, Inorg. Mater. 2011, vol. 47, p. 396–401.

    Article  CAS  Google Scholar 

  29. Kalinina, E.G., Pikalova, E.Yu., and Safronov, A.P., A study of the electrophoretic deposition of thin-film coatings based on barium cerate nanopowder produced by laser evaporation, Russ. J. Appl. Chem., 2017, vol. 90, p. 701–707.

    Article  CAS  Google Scholar 

  30. Zhuravlev, V.D., Bamburov, V.G., Ermakova, L.V., and Lobachevskaya, N.I., Synthesis of functional materials in combustion reactions, Phys. Atomic Nuclei., 2015, vol. 77, p. 1–17.

    Google Scholar 

  31. Boehm, E., Bassat, J.-M., Dordor, P., Mauvy, F., Grenier, J.-C., and Stevens, Ph., Oxygen diffusion and transport properties in non-stoichiometric Ln2−xNiO4 + δ oxides, Solid State Ionics, 2005, vol. 176, p. 2717.

    Article  CAS  Google Scholar 

  32. Kolchugin, A.A., Pikalova, E.Yu., Bogdanovich, N.M., Bronin, D.I., Pikalov, S.M., Plaksin, S.V., Ananyev, M.V., and Eremin, V.A., Structural, electrical and electrochemical properties of calcium-doped lanthanum nickelate, Solid State Ionics, 2016, vol. 288, p. 48.

    Article  CAS  Google Scholar 

  33. Shen, Y., Zhao, H., Liu, X., and Xu, N., Preparation and electrical properties of Ca-doped La2NiO4 + δ cathode materials for IT-SOFC, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 15124–15131.

    Article  CAS  PubMed  Google Scholar 

  34. Kalinina, E.G., Lyutyagina, N.A., Leiman, D.V., and Safronov, A.P., Influence of the Degree of Deaggregation of YSZ Nanopowders in Suspension on the Process of Electrophoretic Deposition, Nanotechnologies in Russia, 2014, vol. 9, № 5–6, p. 274–278.]

    Article  CAS  Google Scholar 

  35. Kosmulski, M., Chemical properties of material surfaces, NewYork, Basel: Marcel Dekker, 2001.

    Google Scholar 

  36. Ishihara, T., Sato, K., and Takita, Y., Electrophoretic Deposition of Y2O3-Stabilized ZrO2 Electrolite Films in Solid Oxide Fuel Cells, J. Amer. Ceram. Soc., 1996, vol. 79, p. 913–919.

    Article  CAS  Google Scholar 

  37. Xie, Z., Ma, J., Xu, Q., Huang, Y., and Cheng, Y.-B., Effects of dispersants and soluble counter-ions on aqueous dispersibility of nano-sized zirconia powder, Ceram. Int., 2004, vol. 30, p. 219–224.

    Article  CAS  Google Scholar 

  38. Zhao, K., Xu, Q., Huang, D.-P., Chen, M., and Kim, B.-H., Microstructure and electrochemical properties of porous La2NiO4 + δ electrodes spin-coated on Ce0.8Sm0.2O1.9 electrolyte, Solid State Ionics, 2012, vol. 18, p. 75.

    Google Scholar 

  39. Flura, A., Nicollet, C., Fourcade, S., Vibhu, V., Rougier, A., Bassat, J.-M., and Grenier, J.-C., Identification and modelling of the oxygen gas diffusion impedance in SOFC porous electrodes: application to Pr2NiO4 + δ, Electrochim. Acta, 2015, vol. 174, p. 1030–1040.

    Article  CAS  Google Scholar 

  40. Gorbova, E., Maragou, V., Medvedev, D., Demin, A., and Tisakaras, P., Influence of Cu on the properties of gadolinium-doped barium cerate, J. Power Sources, 2008, vol. 181, p. 292–296.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Kalinina.

Additional information

Original Russian Text © E.G. Kalinina, E.Yu. Pikalova, A.A. Kolchugin, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 9, pp. 828–837.

Published on the basis of materials of the First International Conference on Intelligent Technologies in Power Engineering, Yekaterinburg, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, E.G., Pikalova, E.Y. & Kolchugin, A.A. Formation of Bilayer Thin-Film Electrolyte on Cathode Substrate by Electrophoretic Deposition. Russ J Electrochem 54, 723–732 (2018). https://doi.org/10.1134/S1023193518090045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518090045

Keywords

Navigation